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Abstract—Fruit’s Soluble Sugar Content (SSC) indicates quality
and ripeness, which is essential for fruit production. Quality
control in fruit production optimizes shipping, storage, waste pre-
vention, and consumer satisfaction. We investigate the feasibility
of estimating SSC using a low-cost, non-destructive system based
on 77-81 GHz mmWave sensing technology. SugarWave collects
fruit reflection signals, trains machine learning models, and
estimates SSC. Our study shows that SugarWave can correctly
identify fruit quality with an accuracy as high as 83%. It can
also measure the SSC, with a median error of 1.4 ◦Bx.

Index Terms—Millimeter-wave; Wireless Sensing; Soluble
Sugar Content; Fruit Quality.

I. INTRODUCTION

Fruit products pass through a production chain involving
farmers, distributors, retailers, and consumers. At each level,
quality preservation methods, such as drying and cooling,
require monitoring ripeness to prevent waste, optimize har-
vest, manage shipping and storage, and ensure high-quality
groceries [2]. Ripeness assessment through smell, color, or
texture can be unreliable [3], so measuring sugar content is
preferred for determining ripeness and taste [4]. Soluble Sugar
Content (SSC) is one of the critical characteristics that directly
determines fruit ripeness since a ripening fruit accumulates
soluble sugars due to biochemical changes.

Traditionally, SSC is determined by high-performance liquid
chromatography [5], gas chromatography-mass spectrometry
[6], or Brix measurement, where 1 ◦Brix (Bx) refers to 1
gram of sucrose in 100 grams of an aqueous solution [7].
These methods subject fruits to laborious and destructive pro-
cessing, and professional analysts must do the assessment with
sophisticated equipment. Recently proposed approaches, such
as Near-infrared (NIR) [8] and Ultraviolet-visible spectroscopy
[9], are non-destructive, but require specialized, expensive
devices and a professional to calibrate and operate.

Towards developing a low-cost, non-destructive means for
estimating the SSC in fruits, we propose SugarWave leveraging
millimeter-wave (mmWave) wireless technology in 5G-and-
beyond smart devices. SugarWave is based on the principle that
the strength of signals reflected from objects depends on their
material’s inherent properties, and varying SSC levels alter
these characteristics, influencing the reflected signals [10].
SugarWave employs a multi-antenna mmWave transceiver
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(Figure 1[a]) that touches the fruit (Figure 1[c]), transmits
mmWave signals and receives the signal reflection off the fruit,
processes the reflected signals received from all the antennas
to extract features, and feeds those features into a machine
learning model to estimate the SSC in fruits (Figure 1[d]).

We design and prototype SugarWave using a Commercial-
Off-The-Shelf (COTS) 77–81 GHz mmWave transceiver [11]
for collecting the reflected signals and an ATAGO Digital
Refractometer [12] to collect the ground truth Brix values.
We collect reflected signals and ground truths from 450 sugar
solutions of glucose, fructose, and sucrose, and 404 samples
from fruits comprising of apples, oranges, kiwis, mandarins,
red plums, and granny smiths. Our experimental results show
that SugarWave can estimate SSC in sugar solutions and fruits
with median errors of 0.52 ◦Bx and 1.4 ◦Bx, respectively,
and classifies fruits as average, good, and excellent quality
with an accuracy of up to 83%. As stated previously, a fruit’s
visual features might not be indicative of the quality of the
fruit. Moreover, according to [13], there is more than $15
billion yearly waste of imperfect and ugly yet completely ripe
fruits. This is because consumers attribute appearance to taste.
Our system helps reduce waste and enables a more precise
measurement of fruit ripeness, aiding consumers in purchasing
high-quality produce.

II. BACKGROUND AND FUNDAMENTALS

A. Material Sensing with mmWave Signals

mmWave sensing approaches rely on transceivers that period-
ically transmit and receive Frequency Modulated Continuous
Wave (FMCW) signals. Earlier studies have shown that the
strength of received reflected signals from surrounding objects
is strongly related to their material [14], [15]. This property
has been explored in recent studies to distinguish different
materials [10] and identify distinct liquids [16].

RSS can theoretically be related to a material’s properties
through the Friis Transmission Formula [10], [16]:

Ar

At
∝ GrGt

λ

4π(2d)
· r (1)

where Ar and At denote the amplitude of the receiving and
transmitting signals respectively, Gr and Gt are the antenna
gains of the receiving and transmitting antennas, d is the
propagation distance, r is the reflection coefficient of the target
material, and λ is the wavelength. The reflection coefficient r
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Figure 1: (a) SugarWave is implemented using a 77–81 GHz millimeter-wave (mmWave) transceiver with 3 transmit (Tx) and 4
receive (Rx) antennas to estimate the Soluble Sugar Content (SSC) of fruits; (b) Top-down view of ground truth data collection
setup for estimating SSC of sugar solutions; (c–d) To estimate a fruit’s SSC, we position it before an mmWave transceiver,
capturing reflection signals from multiple antennas. These signals are processed to extract features and fed into a generator,
mapping them to corresponding sugar solution reflections. The generated output is then passed through a sugar-solution-trained
regression model, estimating the fruit’s SSC on a ◦Brix (Bx) scale [1].

of a material is only related to the target materials relative
permittivity [10]. Based on the above equations, we can
conclude that if At, Gt, Gr, 2d, and λ remain constant in Eq.
(1), then the received power, Ar relies only on the reflection
coefficient or permittivity of the target material.

B. Estimating SSC Using mmWave Signals

Previous studies have demonstrated that a change in the SSC of
a sample affects its permittivity [17], [18]. The reason behind
this phenomenon is that as the SSC increases, more water
molecules attach to the sugar molecules, leading to a decline in
the relative permittivity and impacting the reflected mmWave
signal off the sample (Eq. (1)) [17].

To validate the above hypothesis, we conduct controlled
experiments with water solutions containing glucose, fructose,
and sucrose. Fruits contain these three sugars as well. For each
of the three sugars, we create several solutions using 100 ml
of distilled water with varying amounts of solid sugar, starting
from 3g and going up to 24g in steps of 3g of solid sugar. For
each sample, we employ a digital refractometer (Figure 2[a])
to measure the SSC. Then, we place the solution in front of
the mmWave device, as shown in Figure 1(b), and capture the
mmWave signal reflection.

The result of our experiments is demonstrated in Figures 2
(b-c) that show the relationship between the ◦Bx levels for dif-
ferent amount of sugars, and the RSS for one pair of transmit
and receive antennas (Tx1, Rx4): This result conforms with the
theoretical model (increasing SSC causes decreases in RSS).
However, not all antenna pairs show consistent decrease in
RSS: For the same Tx antenna, the relation between RSS from
a different Rx antenna (Rx3) and ◦Bx level does not match the
theoretical model (Figure 2[d]). Due to the spacing between
the antennas and the curved shape of the objects, the reflected
signals captured from different antennas, in this example Rx3
and Rx4, could be distinct and vary in strength. Therefore, we
propose a multi-antenna design, capturing reflection signals
from all pairs and allowing SugarWave to learn the accurate
inverse relationship between RSS and SSC.
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Figure 2: (a) ATAGO digital refractometer [12] is used to mea-
sure the Brix values; (b) Measured ◦Bx of glucose, fructose,
and sucrose solutions; (c) Consistent with theory, the RSS from
Rx4 decreases as SSC increases; (d) But such inverse relation
is not observed between RSS from Rx3 and SSC.

III. SYSTEM DESIGN

A. Overview

SugarWave aims to enable hand-held and non-destructive
estimation of SSC in fruits using COTS mmWave devices.
It relies on the user positioning the fruit in front of the
mmWave device and capturing the reflected signals from the
fruit. After processing the signals, SugarWave will give users a
Brix value indicating the fruit’s SSC. The design of SugarWave
is separated into two parts. First, we conduct controlled ex-
periments by collecting reflection signals from sugar solutions
containing glucose, fructose, and sucrose and then measure the
SSC using a digital refractometer that measures the SSC on
Brix scale. Following that, we build regression models using
the reflected signals from sugar solutions and Brix values.
Second, we proceed to use the sugar solution trained model for
SSC estimation in fruits. We adopt this approach for several
reasons: (1) Fruits come in a variety of shapes, sizes, and skin
textures. These factors affect the signal reflection, hindering
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Figure 3: Generator and Discriminator networks of the SugarWave system.

the possibility of using reflected signals from different fruits
to create a fruit-agnostic SSC estimation system. (2) Despite
the dissimilarity in physical appearances, fruits are common
in having high water content [19]. (3) Using sugar solutions
for data collection is cheaper and more time-efficient.

There are two main challenges in the design of SugarWave.
First, SSC is correctly measured by the Brix scale only when
sucrose is present in the test sample. But other sugars, namely
glucose and fructose, also affect the Brix value. To overcome
this problem, we employ a Brix correction factor approach
[20], in which we calibrate the Brix values of glucose and
fructose solutions based on the Brix values of the sucrose
solutions. Second, the RSS profiles for sugar solutions and
fruits having the same SSC are different due to differences in
the material that absorbs and scatters the mmWave signals.
Therefore, it is not possible to directly apply a regression
model trained on RSS values from sugar solutions to estimate
SSC in fruits. To overcome this problem, we use a cus-
tomized conditional Generative Adversarial Network (cGAN)
that learns a mapping between sugar solution reflected signals
and fruit reflected signals. Figure 1(d) shows an overview of
the SugarWave system.

B. Multi-Antenna Signals Processing

As demonstrated by the theoretical model (Eq. (1)) and con-
trolled experiments (Figures 2[b-c]), SugarWave aims to esti-
mate SSC by learning the relationship between RSS and SSC.
To this end, it uses a mmWave transceiver and a multi-antenna
design since as we have shown before, a single antenna is not
sufficient to learn the inverse relationship between the RSS
and SSC (Figure 2[d]). The mmWave transceiver consists of 3
Tx and 4 Rx that can measure the reflections simultaneously
from 12 (3 × 4) virtual channels. For all the 12 reflections,
first, traditional FMCW processing is applied to the received
signals to suppress environmental noise. Second, we calculate
the average signal amplitude for the time-domain intermediate
frequency (IF) signal. Third, we apply Fast Fourier Transform
(FFT) on the received signal to create frequency spectrum.
Peak zones in the frequency spectrum show IF signals with
high RSS values and the location of each peak is proportional
to the range of the object that reflected the signal [21]. Since
we control the position of the target (sugar solution or fruit),
and place it almost attached to the mmWave device (Figures

1[b-c]), by cropping the IF signal and focusing only on the
peak zones, we ensure that reflections from background and
clutters are discarded because they are far from the mmWave
device. In the end, the set of cropped peak zones and average
amplitudes in time-domain constitute the dataset used for
building the SSC estimation model, giving us 12 features
for the signal amplitudes and 48 (4 samples × 12 reflection
profiles) features for all the peak zones.

C. Estimating SSC in Sugar Solutions

We use glucose, fructose, and sucrose solutions to collect
reflection signals and measure their SSC in Brix using a re-
fractometer. The refractometer is calibrated based on sucrose,
so the Brix values that we get for glucose and fructose are
not precise. To improve their accuracy, we find and apply a
correction factor to the Brix values gotten from glucose and
fructose. To this end, we consider a set of Brix measurements
from glucose, fructose, and sucrose solutions where each of the
solutions have 3 to 24 grams of solid sugar. Then, we divide
the Brix measurements of sucrose by the Brix measurements
of glucose and fructose for the same amount of solid sugar,
which yields a correction factor respectively for Brix values in
glucose and fructose solutions for each solid sugar amount. We
apply this correction factor on Brix measurements of glucose
and fructose and form a dataset of signal reflection features
(from the multi-antenna signals processing) and corrected Brix
values of all the sugar solutions.

In SugarWave, we consider three common regression al-
gorithms: Linear Regression (LR), Support Vector Regression
(SVR), and Random Forest Regression (RF) to develop an SSC
estimation model from the 60 extracted features after multi-
antenna signal processing and the collected ground truth Brix
from sugar solutions. Eventually, SugarWave would employ
only the best of these models. We develop the LR, SVR, and
RF models to estimate SSC in sugar solutions first and then
later adopt them for estimating SSC in fruits.

D. Estimating SSC in Fruits

Reflected mmWave signals from fruits and sugar solutions
have different properties because of the difference in their
physical material [16]. In experimenting with sugar solutions,
reflections come from the container and the solution inside and
the ground truth Brix is measured by extracting a few drops



from the solutions. On the other hand, with fruits, reflections
are from the skin and the high water content inside the fruit
that has soluble sugars, and the ground truth is measured
by using a juice extractor and measuring the Brix of juice.
Therefore, using the SSC estimation model trained on sugar
reflections to estimate SSC in fruits, first requires making
fruit reflections similar to sugar solution reflections. To learn
a mapping from fruit reflection signals to sugar reflection
signals, we employ a conditional Generative Adversarial Net-
work (cGAN). The cGAN involves a Generator G that learns
the association between the fruit reflection signals and sugar
reflection signals captured from targets with close Brix values
(less than 0.5 ◦Bx difference), and a Discriminator D that
helps to gradually improve the capabilities of G [22]. Once
the cGAN is trained, given the fruit reflection features, it
can generate the equivalent sugar solution reflection features,
which are then fed to the SSC estimation model trained on
sugar solution features for outputting the SSC in fruits.

SugarWave’s cGAN Model: The cGAN architecture of Sug-
arWave is shown in Figure 3. The core purpose of Generator
is to convert the features extracted from fruit reflection to
the features from sugar reflection that are used in training
our model. To this end, the 60 extracted features from fruit
reflections are converted to 1-D feature vectors, and given to
a dense layer with 900 neurons where each of the features are
mapped to 15 neurons (15 × 60 = 900) to improve learning.
Each set of 15 neurons are reshaped as smaller 1-D vectors and
fed to two deconvolution layers for up sampling and spreading
the information out over a larger feature space, since the output
of the Generator also has to be signal reflection features
with the same size as input. The purpose of Discriminator
is to teach the Generator a better association between the
fruit reflection features and sugar reflection features. This is
accomplished by distinguishing between real and generated
samples during the training process. It takes two inputs: fruit
reflection features and sugar reflection features, which can
either be real or generated. The system then produces an
output, representing the probability that the input is real.
The two input features are given to 2 convolution layers
for encoding and extracting features. Then, the output of
convolution layers are reshaped, concatenated, and fed into a
fully-connected dense layer that finally reach a single neuron
output layer. The final dense layer outputs the probability of
being real or fake. Table I summarizes the Generator and
Discriminator network parameters.

IV. IMPLEMENTATION

SugarWave’s Setup: We implement and evaluate SugarWave
using reflection data collected from a 77-81 GHz mmWave
device, TI IWR1443BOOST [11], as shown in Figure 1(a).
The mmWave transceiver has 3 transmit and 4 receive antennas
that can measure the reflections simultaneously from 12 (3 ×
4) virtual channels, and by operating on a 4 GHz of bandwidth,
gives a depth resolution of 3.75 cm. The ground truth SSC is
measured in Brix scale by a digital refractometer [12] (Figure

Table I: Generator and Discriminator network parameters
for SugarWave’s cGAN. RSC: Reflected Signal Convolu-
tional layer; RSDC: Reflected Signal Deconvolutional layer;
FC: Fully Connected layer; Act. Fcn.: Activation Function;
LReLU: Leaky ReLU.

Generator

Layer FC RSDC1 RSDC2 RSC Output

Filter # 900 128 128 1

Filter Size 4 4 4

Act. Fcn. LReLU LReLU LReLU LReLU Linear

Discriminator

Layer RSC1 RSC2 FC Output

Filter # 64 64 60 1

Filter Size 4 4

Act. Fcn. LReLU LReLU LReLU Sigmoid

2[a]), with an accuracy of ±0.2 ◦Bx.

Data Collection: We gather two datasets in SugarWave:
(1) We collect data from sugar solutions to build our SSC

estimation model. To this end, we use 100 ml distilled water
inside a container and add sugar starting from 0g (no sugar and
only distilled water) to 24g, with increments of 3g. At every
step, we measure the SSC by extracting three drops from the
solution and measuring the ground truth SSC in Brix scale.
After that, we place the container in front of the mmWave
transceiver, touching the antennas, and collect mmWave signal
reflections (Figure 1[b]). This process is repeated separately
for glucose, fructose, and sucrose (the three sugars found in
fruits), and we gather 150 input-output pairs of mmWave
reflections and Brix values for each sugar type. Then, we
determine the Brix correction factors for glucose and fructose,
with the method described in section III-C, which are found
to be 1.16 and 1.03 respectively.

After applying the Brix correction factor, we combine
the measurements and form a dataset with 450 input-output
pairs of mmWave reflections and Brix values. (2) We collect
reflection signals and measure SSC in real fruits. For each
fruit, we collect four reflection signals from four different
orientations, 90◦ apart, of the fruit placed in front of the
mmWave transceiver while touching the antennas. Then, to
measure the ground truth SSC in each orientation, we cut the
fruit into 4 pieces, use a juicer to extract the juice, and measure
the SSC from the juice in each cut using the refractometer. We
have noticed that within a fruit, the SSC varies significantly
with a maximum observed variation of 3.7 ◦Bx. This is
because based on the orientation of the fruit on the tree or
the condition that the fruit is stored, some parts will ripen
faster, and, as a result, have a higher SSC. In total, we collect
data from four different orientations in 101 fruits, giving us
404 (4 × 101) input-output pairs of mmWave reflections and
Brix values. Our fruit dataset is summarized in Table II.

Data Generation: After collecting data from fruits, the re-



Table II: Fruit dataset information.

Fruit Sample # SSC Range (◦Bx)

Apple 124 9.5 - 18

Orange 52 12.4 - 20.8

Mandarin 88 10.9 - 15.9

Green Kiwi 72 12.5 - 17.1

Golden Kiwi 28 14 - 18

Red Plum 20 13.7 - 16.4

Granny Smith 20 14 - 18

flection data has to be mapped to equivalent sugar solution
reflection data. This is because we want to use a regression
model that is trained only on data from sugar solutions, due
to the reasons described at the end of section II, to estimate
SSC in fruits. The SugarWave’s cGAN for this task uses the
reflection features from sugar solutions and fruits as input-
output pairs for learning and generating new data. The aim
is such that for each fruit reflection data, an equivalent sugar
solution reflection data is found, with both originating from
samples having similar Brix values.

Network Training: SugarWave requires training of (1) SSC
estimation regression model, and (2) cGAN. To train the
LR, SVR, and RF models on reflection signals from sugar
solutions, SugarWave searches for a set of hyperparameters
that yield an optimal model which minimizes the loss function.
A vanilla LR does not have any hyperparameters for tuning.
For SVR we explore different kernels, such as, Linear, RBF,
etc, different kernel coefficients (gamma), different penalty
parameters (C), and observe that an SVR model with RBF
kernel, gamma set to 1

features # , and C=1 performs best. For
RF, we found that the best result is obtained when we use
100 decision trees. For training the cGAN, we observe that
with Adam optimizer and a learning rate of 3×10−4 the model
performs better. For the Leaky ReLU activation functions in
the Generator and Discriminator model, the alpha (negative
slope function) set to 0.2 gives us the best cGAN. We train
the model with these specified parameters for 50 epochs, after
which we see no further noticeable improvement.

V. PERFORMANCE EVALUATION

We perform experiments to assess SugarWaves performance
in SSC estimation. Before providing the evaluation details,
we summarize the key findings below.

• SugarWave estimates SSC in sugar solutions with a
median error of 0.52 ◦Bx (Figure 4). This is a significant
improvement due to our multi-antenna system compared
to a previously proposed single-antenna design [1] that
results in a median error of 2.63 ◦Bx (Figure 6[a]).

• SugarWave estimates SSC in real fruits with a median
error of 1.4 ◦Bx (Figure 5[a]) and achieves an accuracy of
70% to 83% in classifying the quality of fruits as average,
good, and excellent (Table III).

Effectiveness of Predicting ◦Bx: To evaluate SugarWave’s
effectiveness in estimating SSC of sugar solutions, we train
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LR, SVR, and RF models on glucose, fructose, and sucrose
sugar solution data and also the combined sugar solution data
after applying the correction factor. Our evaluation results,
presented in Figure 4, show that SugarWave is highly accurate
at estimating SSC in sugar solutions using LR and SVR with
median errors of 0.52 and 0.56, respectively. Using RF yields
poor results in all the cases, therefore, we only focus on LR
and SVR. Next, we evaluate SSC estimation in fruits by using
the SugarWave’s cGAN to generate equivalent sugar solution
reflection features from the fruit reflection features and feeding
the generated features to the sugar-solution-trained regression
models (Figure 1[d]). We observe that SugarWave achieves
the best result using SVR model trained on the combined
sugar solution data with the median and 90th percentile SSC
estimation error of 1.4 ◦Bx and 3.1 ◦Bx, respectively. Figures
5(a-d) summarize the results of these evaluations.

Effectiveness of Multi-Antenna Signal Processing: To eval-
uate the effectiveness of our multi-antenna based approach, we
compare its performance with that of single-antenna design.
In each case, we consider the impact of selecting different
extracted features from the reflection profiles, namely am-
plitudes from the time-domain signal and RSS values from
the frequency-domain signal. As shown in Figure 6(a), using
only time-domain features leads to a high prediction error of
more than 3 ◦Bx for both single-antenna and multi-antenna
based approaches. On the other hand, using both time-domain
amplitudes and frequency-domain RSS profiles from multiple
antennas as features brings down the SSC estimation error to
0.5 ◦Bx, whereas the corresponding error with a single antenna
is still above 2.5 ◦Bx. This improvement is quite significant
and it confirms that using a single-antenna design and time-
domain features, as in a previous study [1], does not yield an
accurate SSC estimation in a practical environment.

Multi-Antenna Feature Selection Based on Distance: To
evaluate the effectiveness of choosing only a subset of com-
ponents in the frequency-domain of reflection signals, i.e.,
removing the reflections from background objects, we conduct
experiments by limiting the number of selected features in the
frequency domain and monitoring the SSC estimation error.
We start by limiting features to the signal amplitudes (named
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Figure 5: Evaluating the performance of SugarWave in estimating SSC of fruits with different cGANs and regression models.
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Amp) in the time-domain and the first component in the
frequency-domain (named FFT(1)), and build the regression
model. We repeat this process for the second frequency
component up to the sixth frequency component (FFT(2),
..., FFT(6)). Additionally, we consider selecting a set of
consecutive frequency components (FFT(1-2), FFT(1-3), ...,
FFT(1-6)) as features. The RSS values in each FFT point
come from the objects at a specific distance. Since the depth
resolution of our mmWave device is 3.75 cm, FFT(1) will have
reflections from objects less than 3.75 cm from the mmWave
device, and FFT(6) covers the distance of 18.75 to 22.5 cm
from the mmWave device. We can observe from Figure 6(b)
that using only a single point in the frequency-domain yields
high errors in SSC estimation. Furthermore, selecting a range
of FFT points results in a better performance up to FFT(4),
and beyond that we see no improvements in the model. The
features of FFT(1-4) cover a range of 0 to 15 cm and are
suitable for evaluating the model on real fruits, since the height
and width of our fruits are within this range.

SugarWave’s cGAN: To evaluate the effectiveness of Sug-
arWave’s cGAN, we compare the results of estimating SSC
in fruits in two cases. First, we use LR and SVR models
to directly build an SSC estimation model from fruit reflec-
tion features. Then, we evaluate these models on a test set
containing 100 fruit samples. In the second case, we use a
cGAN trained to generate equivalent sugar reflection features
from fruit reflection features, and sugar-solution-trained LR
and SVR models. We give the same 100 fruit samples as
input to the cGAN’s generator, and feed the generated features
to the sugar-solution-trained LR and SVR models. Figure 7
shows the SSC estimation error of these 100 samples in both
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Figure 7: Performance of SugarWave with (x-axis) and without
(y-axis) using a cGAN.

cases. Each point on the plot represents a test sample: x-value
is the error when we use a cGAN, and y-value represents
the error when the system is evaluated using fruit-trained
model without a cGAN. For the same sample, the error using
cGAN is typically lower than directly applying regression to
fruit reflection data, demonstrating that incorporating a cGAN
enhances SugarWaves SSC estimation accuracy in fruits.

Fruit Quality Assessment: Brix quality charts [23] are used
for classifying the quality of fruit products as poor, average,
good, and excellent. For example, an average quality apple has
a Brix measurement between 8 and 12 ◦Bx. So, to evaluate
SugarWave’s performance in terms of qualitative assessment
of fruit, we use 100 fruit samples and measure the ground
truth Brix values with a digital refractometer.

We then use these values and the Brix quality charts to
categorize them as average, good, or excellent. In our dataset,
no fruits were of poor quality. Next, we use SugarWave’s



Table III: Confusion Matrix for predicting fruit quality in
SugarWave.

Actual/Predicted Quality Average Good Excellent

Average 73% 27% 0%

Good 17% 83% 0%

Excellent 0% 30% 70%

SSC estimation model to calculate an estimated Brix for each
sample, and use the Brix quality charts to classify the samples.
Comparing actual and predicted fruit quality, we generate
a confusion matrix, with rows and columns denoting actual
and predicted quality classes respectively. This procedure,
executed five times with varied fruit samples, computes an
average prediction accuracy per class, displayed in Table III.
SugarWave classifies fruits as average, good, and excellent
quality with respective accuracies of 73%, 83%, and 70%.

VI. RELATED WORK

Destructive Approaches: Industry-standard methods like gas
chromatography-mass spectrometry and high-performance
liquid chromatography are widely used for analyzing organic
acids, amino acids, and sugars in fruits [7]. Both techniques
demand professional training and expensive lab equipment,
making them unsuitable for lay consumers. Evaporative
light-scattering detection [7], another destructive approach,
requires advanced processing and specialized equipment.

Non-Destructive Approaches: Spectroscopic techniques
like nuclear magnetic resonance, high-resolution magic
angle spinning, and near-infrared (NIR) spectroscopy
enable nondestructive SSC measurement in fruits. Though
non-destructive, it requires additional equipment like
spectrophotometers. Recent low-cost, low-power mmWave
devices for SSC estimation necessitate special equipment
[1], [24] and single-antenna setups, our work refines these
approaches, improving their real-world applicability.

VII. CONCLUSION

We introduce SugarWave, a promising solution for non-
destructive SSC estimation in fruits. Unlike systems that
destroy fruit, require expensive equipment, or use impracti-
cal antennas, SugarWave employs low-cost COTS mmWave
devices. It utilizes learning models and customized generative
adversarial networks for estimating SSC in fruits and sugar
solutions. Future work includes testing with more fruit samples
and reducing proximity requirements.
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