Outdoor Millimeter-Wave Picocell Placement using Drone-based Surveying and Machine Learning

Ian McDowell, Rahul Bulusu, Hem Regmi, Sanjib Sur University of South Carolina

July 26, 2023

UNIVERSITY OF SOUTH CAROLINA

College of Engineering and Computing

Proliferation of 5G

- 5G use has rapidly increased in recent years and is expected to support massive numbers of smart devices worldwide
- 5G is used for mobile communications, virtual/augmented reality, Internet of Things, autonomous vehicles, etc
- 5G uses millimeter-wave (mmWave) as its major wireless technology and short-range base stations called picocells to provide high data rates

Challenges with Picocell Placement

- Line-of-Sight (LoS) paths to picocells are easily obstructed and thus often rely on Non-Line-of-Sight (NLoS) paths
- Finding NLoS paths in outdoor environments can be difficult when many objects do not reflect strongly
- Deployers must find strong NLoS paths for picocells to use when LoS paths are blocked

Challenges with Picocell Placement

- Line-of-Sight (LoS) paths to picocells are easily obstructed and thus often rely on Non-Line-of-Sight (NLoS) paths
- Finding NLoS paths in outdoor environments can be difficult when many objects do not reflect strongly
- Deployers must find strong NLoS paths for picocells to use when LoS paths are blocked

Existing Approaches

- Existing approaches mostly rely on site surveys or propagation models to estimate the mmWave Signal Reflection Profile (SRP) in the environment
- They then use the SRPs to place picocells in a way that achieves high signal strength through NLoS paths
- Site surveys are expensive and time-consuming in large outdoor environments, and propagation models are often unable to represent them at high frequencies
- Past works that aim to reduce survey time are limited to small-scale indoor environments, and do not address issues present in large outdoor environments

"ExterNetworks charges \$4,200 for outdoor wireless site surveys up to 100,000 sq.ft."

Source: ExterNetworks

Our Approach: Theia

- Theia aims for easier outdoor surveying and enables deployers to identify near-optimal picocell locations
- Theia leverages visual information to model the complex relationship between visual data and the mmWave SRPs
- Theia utilizes advancements in deep learning and builds a customized deep convolutional neural network
- This enables Theia to predict SRPs from unseen viewpoints and use them to place picocells that maximize available NLoS paths

Signal Reflection Profiles

- Using a mmWave transceiver, we send signals at increasing frequency into the environment
- The signal bounces off reflecting points in the environment and returns to the receiver
- With the time of flight of the signal and a Fast Fourier Transform (FFT) we get the reflectors' distance
- With 3 transmit and 4 receive antennas, we get SRPs from 12 virtual channels at slightly different poses

System Overview

- Theia enables deployers to achieve optimal picocell placement with easy SRP prediction
- The drone platform collects depth images, pose data, and SRPs from the outdoor environment
- The depth and pose data is synchronized with SRPs then fed into a Deep Convolutional Neural Network
- The DCNN predicts SRPs at different environmental locations, which are used for picocell placement

Visual to SRP Relationship

- Test Hypothesis: *Similar looking objects produce similar mmWave reflection profiles*
- Compute SSIM between depth images and MSE between corresponding mmWave reflections
- A complex, nonlinear trend cannot be captured by a simple regression-type model
- Differences between environments would make a single model nongeneralizable

SRP Prediction using DCNN

- Measured SRPs act as low-resolution images, predicted SRPs act as high-resolution images, and positions as labels
- Our problem is in the same vein as the super-resolution problem
- Depth images and antenna pose are fed as input with SRPs at the same pose used as ground truth
- MSE between predicted and ground truth SRPs are used as the loss function

Preprocessing: Data Synchronization

- The different systems start at different times and have different sampling rates, but hardware-level synchronization is not available for our platform, so we implement software-level synchronization
- By recording starting timestamps for each system, we can use the time offset to align the data
- Using interpolation and decimation to match rates, using an overlapping time window for the SRPs

Preprocessing: Constructing DCNN Input

- The transceiver's signal emission (beam) pattern means not all depth information contributes equally
- We first get the Inverse Depth Image (IDI) to prioritize closer objects
- Using the normalized transmit and receive power for different angles, we get a 2D beam pattern matrix
- We adjust the 2D matrix to match the depth sensor's Field of View (FoV), then mask the IDI with this
- We supply the Masked Inverse Depth Image (MIDI) and transceiver pose as input for the DCNN

DCNN Model

- We evaluated multiple models as convolution layers, deciding on *MobileNetV3_Large* as it produced the highest performance with the lowest memory and computational constraints
- We concatenate the MIDI for input into *MobileNetV3_Large* for feature extraction, trimming the model after its convolution layers, then feed the output to customized FC layers for regression
- We include the transceiver pose directly into the FC layer to increase the network's generalizability

Picocell Deployment

- Since SRPs provide information about strong reflectors, we can place picocells to best utilize the NLoS paths the reflectors provide
- The placement algorithm uses a Ray-tracing approach to simulate a separate transmitter and receiver and includes realistic reflections from predicted SRPs
- We use three placement strategies:
 - "Average" aims to provide higher mean throughput to all clients in the environment
 - "Variance" aims to achieve similar signal strengths across the environment
 - "Link-outage" aims to ensure a certain level of signal strength across the environment

Real-world Data Collection

- Hardware Setup:
 - DJI Matrice 100 Drone for flight
 - DJI Guidance System for depth and IMU
 - TI IWR1443BOOST 76-81GHz mmWave transceiver and DCA1000EVM capture card for SRP collection
- We use a 2 meter tethered connection between drone and laptop for safety and data integrity
- Zigzag paths are used with each 10-minute data collection consisting of multiple passes
- Different paths are used to compare path variability

Real-world Data Collection

- Datasets are collected across 6 environments in 3 different outdoor spaces over a period of 4 months
 - Environments A.# are all located in outdoor space A
- We have collected and processed over 44 GB of data with about 144,000 data samples

Environment	Drone Path	Base Yaw Angle	Purpose	Elements of Environment
A.1	P1	0°	Courtyard and Patio	Trees, patio tables, patio seating, stairs, handrails
A.2	P1	90° CW	Courtyard	Trees, benches, glass windows
A.3	P2	45° CCW	Courtyard and Patio	Trees, patio tables, patio seating, stairs, glass windows and doors
A.4	P3	0°	Courtyard and Patio	Trees, patio tables, patio seating, glass windows and doors
B.1	P3	0°	Sports Field	Trees, bushes, benches, fences, glass windows and doors
C.1	P1	180° CW	Sports Field Lounging Area	Trees, bushes, picnic table, fences

Network Training

- Theia's SRP prediction model is trained with the following parameters:
 - <u>Training time</u>: 1000 epochs, halted after 20 epochs of learning stagnation
 - <u>Optimizer</u>: NAdam with learning rate of 0.005
 - <u>Loss Function</u>: Mean Squared Error (MSE)

- The models are designed and implemented using Python and Pytorch on a server to reduce training time to ~ 1 hour for each model
 - AMD EPYC CPU @ 2.8GHz
 - 264 GB RAM
 - Nvidia RTX A6000 GPU

DCNN Model Performance

- Trained on datasets from outdoor space A only using 1 virtual channel
- Samples chosen at random with 90:10 train-test ratio (2145 test samples)
- Median error: **3.7 dB**
- 90th percentile error: 9.3 dB
- 90th %tile error has little effect on picocell placement.

Multi-Channel Surveying

- Trained on datasets using different numbers of virtual channels
- The number of virtual channels has little effect on the median and 90th percentile error
- Deployers can use any number of virtual channels

Drone Path Variability

- Trained on datasets using low, medium, and high path variability (Drone paths P1, P2, and P3)
- Errors are within **0.2 dB** for both metrics for all path types
- Deployers likely won't need to worry about path variability

Survey Time Requirement for Fine-Tuning

- The model is initially trained on datasets from environment A.1
- Then the model is trained on samples from A.2 based on survey time, then tested with A.2 samples
- With no fine-tuning, the median and 90th percentile errors are
 6.3 dB and 13.4 dB respectively
- Just 1 minute of fine-tuning reduces errors to 4.2 dB and 10.4 dB, and 5 minutes performs like the base model
- Deployers will save time collecting new samples

Generalizability to New, Similar-Looking Environments

- The model is trained on datasets for each outdoor space
- Despite environmental differences, the model is able to learn with all errors within ~0.1 dB of each other
- Theia performs well in new, similar looking environments

Picocell Deployment Performance

- We build a Ray-tracing method with separate transmit and receive antennas using measured SRPs, using Theia's prediction error to enable realistic placement errors
- We also simulate 3 other placements:
 - Random chooses random placements in the environment
 - Common-Sense places picocells at corner locations
 - Optimal is placed assuming zero SRP error

• Theia performs close to Optimal when placing picocells in outdoor environments

Picocell Deployment Performance

- We look at the performance of the "average", "variance", and "link-outage" strategies for in outdoor space A
- All methods have median average signal strength within 5 dB, and Theia is able to limit SRP variation to 0.8 dB and reduce the area without links by ~2.76x compared to Random and Common-Sense

• This shows the importance of accurate SRP prediction for deploying picocells in outdoor areas

Conclusion

- Theia enables accurate mmWave SRP prediction in multiple large-scale outdoor environments
- Theia can fine-tune to new environments with as little as 5 minutes of survey data
- Theia's SRP prediction accurately estimates picocell placements to enable reliable outdoor mmWave networks

Thank you for your time!

Check out our paper for more results:

