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Proliferation of 5G
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• 5G use has rapidly increased in recent years and is expected to 
support massive numbers of smart devices worldwide

• 5G is used for mobile communications, virtual/augmented reality, 
Internet of Things, autonomous vehicles, etc

• 5G uses millimeter-wave (mmWave) as its major wireless 
technology and short-range base stations called picocells to provide 
high data rates

Source: CableFree Networks



Challenges with Picocell Placement
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• Line-of-Sight (LoS) paths to picocells are easily obstructed 
and thus often rely on Non-Line-of-Sight (NLoS) paths

• Finding NLoS paths in outdoor environments can be 
difficult when many objects do not reflect strongly

• Deployers must find strong NLoS paths for picocells to use 
when LoS paths are blocked

Picocell
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Existing Approaches
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• Existing approaches mostly rely on site surveys or propagation models to estimate the mmWave Signal 
Reflection Profile (SRP) in the environment

• They then use the SRPs to place picocells in a way that achieves high signal strength through NLoS paths

• Site surveys are expensive and time-consuming in large outdoor environments, and propagation models are 
often unable to represent them at high frequencies

• Past works that aim to reduce survey time are limited to small-scale indoor environments, and do not address 
issues present in large outdoor environments

Source: Remcom

“ExterNetworks charges $4,200 for outdoor 
wireless site surveys up to 100,000 sq.ft.”

Source: ExterNetworks



Our Approach: Theia
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• Theia aims for easier outdoor surveying and enables deployers to identify near-optimal picocell locations

• Theia leverages visual information to model the complex relationship between visual data and the mmWave SRPs

• Theia utilizes advancements in deep learning and builds a customized deep convolutional neural network

• This enables Theia to predict SRPs from unseen viewpoints and use them to place picocells that maximize 
available NLoS paths



Signal Reflection Profiles
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• Using a mmWave transceiver, we send signals at 
increasing frequency into the environment

• The signal bounces off reflecting points in the 
environment and returns to the receiver

• With the time of flight of the signal and a Fast Fourier 
Transform (FFT) we get the reflectors’ distance

• With 3 transmit and 4 receive antennas, we get SRPs 
from 12 virtual channels at slightly different poses

SRPsDepth



System Overview
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• Theia enables deployers to achieve optimal picocell 
placement with easy SRP prediction

• The drone platform collects depth images, pose 
data, and SRPs from the outdoor environment

• The depth and pose data is synchronized with SRPs 
then fed into a Deep Convolutional Neural Network

• The DCNN predicts SRPs at different environmental 
locations, which are used for picocell placement



Visual to SRP Relationship
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• Test Hypothesis: Similar looking objects produce 
similar mmWave reflection profiles

• Compute SSIM between depth images and MSE 
between corresponding mmWave reflections

• A complex, nonlinear trend cannot be captured by 
a simple regression-type model

• Differences between environments would make a 
single model nongeneralizable



SRP Prediction using DCNN
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• Measured SRPs act as low-resolution images, predicted SRPs act as high-
resolution images, and positions as labels

• Our problem is in the same vein as the super-resolution problem

• Depth images and antenna pose are fed as input with SRPs at the same pose 
used as ground truth

• MSE between predicted and ground truth SRPs are used as the loss function



Preprocessing: Data Synchronization
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• The different systems start at different times and have different sampling rates, but hardware-level 
synchronization is not available for our platform, so we implement software-level synchronization 

• By recording starting timestamps for each system, we can use the time offset to align the data

• Using interpolation and decimation to match rates, using an overlapping time window for the SRPs



Preprocessing: Constructing DCNN Input
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• The transceiver’s signal emission (beam) pattern 
means not all depth information contributes equally

• We first get the Inverse Depth  Image (IDI) to 
prioritize closer objects

• Using the normalized transmit and receive power for 
different angles, we get a 2D beam pattern matrix

• We adjust the 2D matrix to match the depth sensor’s 
Field of View (FoV), then mask the IDI with this

• We supply the Masked Inverse Depth Image (MIDI) 
and transceiver pose as input for the DCNN



DCNN Model
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• We evaluated multiple models as convolution layers, deciding on MobileNetV3_Large as it produced the 
highest performance with the lowest memory and computational constraints

• We concatenate the MIDI for input into MobileNetV3_Large for feature extraction, trimming the model after 
its convolution layers, then feed the output to customized FC layers for regression

• We include the transceiver pose directly into the FC layer to increase the network’s generalizability



Picocell Deployment
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• Since SRPs provide information about strong reflectors, we can place picocells to 
best utilize the NLoS paths the reflectors provide

• The placement algorithm uses a Ray-tracing approach to simulate a separate 
transmitter and receiver and includes realistic reflections from predicted SRPs

• We use three placement strategies:

• “Average” aims to provide higher mean throughput to all clients in the environment

• “Variance” aims to achieve similar signal strengths across the environment

• “Link-outage” aims to ensure a certain level of signal strength across the environment

Regmi, et al., 2022



Real-world Data Collection
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• Hardware Setup:
• DJI Matrice 100 Drone for flight

• DJI Guidance System for depth and IMU

• TI IWR1443BOOST 76-81GHz mmWave transceiver and 
DCA1000EVM capture card for SRP collection

• We use a 2 meter tethered connection between 
drone and laptop for safety and data integrity

• Zigzag paths are used with each 10-minute data 
collection consisting of multiple passes

• Different paths are used to compare path 
variability



Real-world Data Collection
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• Datasets are collected across 6 environments in 3 
different outdoor spaces over a period of 4 months
• Environments A.# are all located in outdoor space A

• We have collected and processed over 44 GB of data 
with about 144,000 data samples



Network Training
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• Theia’s SRP prediction model is trained with the following parameters:

• Training time: 1000 epochs, halted after 20 epochs of learning stagnation

• Optimizer: NAdam with learning rate of 0.005

• Loss Function: Mean Squared Error (MSE)

• The models are designed and implemented using Python and Pytorch on a 
server to reduce training time to ~1 hour for each model

• AMD EPYC CPU @ 2.8GHz

• 264 GB RAM

• Nvidia RTX A6000 GPU



DCNN Model Performance
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• Trained on datasets from outdoor space A only 
using 1 virtual channel

• Samples chosen at random with 90:10 train-test 
ratio (2145 test samples)

• Median error: 3.7 dB
• 90th percentile error: 9.3 dB

• 90th %tile error has little effect on picocell placement.



Multi-Channel Surveying
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• Trained on datasets using different numbers of 
virtual channels

• The number of virtual channels has little effect on 
the median and 90th percentile error

• Deployers can use any number of virtual channels



Drone Path Variability
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• Trained on datasets using low, medium, and high path 
variability (Drone paths P1, P2, and P3)

• Errors are within 0.2 dB for both metrics for all path 
types

• Deployers likely won’t need to worry about path variability



Survey Time Requirement for Fine-Tuning

21

• The model is initially trained on datasets from environment A.1

• Then the model is trained on samples from A.2 based on survey 
time, then tested with A.2 samples

• With no fine-tuning, the median and 90th percentile  errors are 
6.3 dB and 13.4 dB respectively

• Just 1 minute of fine-tuning reduces errors to 4.2 dB and 
10.4 dB, and 5 minutes performs like the base model

• Deployers will save time collecting new samples



Generalizability to New, Similar-Looking Environments
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• The model is trained on datasets for each outdoor space

• Despite environmental differences, the model is able to learn 
with all errors within ~0.1 dB of each other

• Theia performs well in new, similar looking environments



Picocell Deployment Performance
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• We build a Ray-tracing method with separate transmit and receive antennas using measured SRPs, using 
Theia’s prediction error to enable realistic placement errors

• We also simulate 3 other placements:
• Random chooses random placements in the environment
• Common-Sense places picocells at corner locations
• Optimal is placed assuming zero SRP error

• Theia performs close to Optimal when placing picocells in outdoor environments



Picocell Deployment Performance
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• We look at the performance of the “average”, “variance”, and “link-outage” strategies for in outdoor space A

• All methods have median average signal strength within 5 dB, and Theia is able to limit SRP variation to 
0.8 dB and reduce the area without links by ~2.76x compared to Random and Common-Sense

• This shows the importance of accurate SRP prediction for deploying picocells in outdoor areas



Thank you for your time!
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Conclusion

• Theia enables accurate mmWave SRP prediction in multiple large-scale outdoor environments

• Theia can fine-tune to new environments with as little as 5 minutes of survey data

• Theia’s SRP prediction accurately estimates picocell placements to enable reliable outdoor mmWave networks

Check out our paper for more results:

If you have questions: Email to mcdoweli@email.sc.edu
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