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Figure 1: (a) Example of mmWave reflection signal; (b) mmWaveNet architecture overview; (c) Architecture of Feature Extractor; (d)
Generator architecture; (e) Decoder architecture; (f) Output of MilliPCD and mmWaveNet comparing with ground truth PCD.

ABSTRACT

Millimeter wave (mmWave) 3D imaging has been applied for point
cloud data (PCD) generation due to its valuable attributes, such as
working under low light, compact size, and low-cost. However, past
works have focused on transforming millimeter wave reflection sig-
nals into other data structures, like polar images and coarse PCDs
before applying neural network to produce dense PCDs. Those al-
gorithms will filter some useful features. To address this issue, our
paper proposes an innovative prototype: mmWaveNet, a deep learn-
ing model that directly uses reflection signals as input and generates
high-quality PCDs. We have experimentally evaluated mmWaveNet
in a large indoor environment.
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1 INTRODUCTION

In recent years, robotics have found widespread application across
various fields, e.g., in factories and warehouses, numerous mobile
robots are deployed to facilitate automatic production lines, relieving
workers of repetitive tasks [1]. To navigate and operate, these robots
rely on their sensors to produce a 3D map of an environment. A
popular data structure to represent a 3D environment is the Point
Cloud Data (PCD), which stores the 3D coordinates of the different
points. Compared with other data structures like Meshes and Voxels,
PCD provides high-resolution with a low memory footprint. And,
millimeter-wave (mmWave) wireless signals from 5G-and-beyond
smart devices can produce a PCD, which work under low or no
light conditions in contrast to RGBD sensors and have lower cost
compared to the LIDARs. MmWave devices rely on reflection sig-
nals from the environment and combine the signals from multiple
antennas to construct the environmental structure. But the resolution
of the PCD generated from the mmWave devices can be low due to
specular and weak signal reflectivity [2].

Recently, some researchers have used deep learning models on
mmWave signals to improve the quality of generated PCD [3, 4],
by learning the relationships between environmental structures gen-
erated by RGBD/LiDAR and mmWave devices. For example, Mil-
liPCD [3] proposes a two stages framework to produce complete
PCD, where in the first stage, it uses Time Domain Backprojection
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algorithm on reflection signals to produce local PCD and then con-
structs rotation vectors from pose information to translate multiple
local PCD into a global PCD. In the second stage, a deep learn-
ing model is applied to extract features and construct a dense PCD.
RadarHD [4] applies a very low threshold on the heatmap generated
by the mmWave signals for preserving strong reflectors’ informa-
tion, and it arranges these thresholded points into polar image, which
consists of range along rows and azimuth along columns. However,
processing raw reflection signals before feeding them into deep
learning model, can lead to a serious loss of information, which
limits the performance of these methods.

To overcome these drawbacks, we propose mmWaveNet, which
directly uses mmWave reflection signals in a deep learning model to
improve the quality of the generated PCD. The model directly ex-
tracts features from the reflection signals without any pre-processing
to preserve a better environmental structure. To this end, we use
residual Convolution Neural Network module to extract detailed
local and global features from raw reflection signals and pose infor-
mation. Then, a generator constructs a sparse PCD seed, followed
by a decoder to expand the seed to generate a complete PCD. Figure
1 shows the input, network, and output from our model.

2 SYSTEM DESIGN

Figure 1(b) shows the overview of mmWaveNet architecture. It con-
sists of three modules: A Feature Extractor for extracting features
from reflection signals and pose; a Generator for producing sparse
PCD seed, and a Decoder for expanding seed into complete PCD.

Feature Extractor: Previous works [3, 4] translate mmWave re-
flection signals into other regular data for deep learning model, such
as polar image and coarse point cloud. However, such transforma-
tion filters weak reflection signals, which might eliminate valuable
information from non-metallic objects. mmWaveNet, on the other
hand, directly extracts features from the reflections and generates
complete high-quality PCD, which can capture detailed features
from all objects. Figure 1(c) shows the Feature Extractor architec-
ture. The basic idea is employing convolution filter to extract local
features and continuously reducing the height and width of inputs
to make convolution filters “see” larger region. To keep detailed
features, we leverage the residual blocks to concatenate features
from all blocks together, so the final features contain both global
features and detailed local features.

Generator and Decoder: To generate high-quality PCD from
features, our Generator (Figure 1[d]) uses Transposed Convolution
to upsample features into initial PCD seed, and combines seed with
folding features. Then, a Multi-Layer Perceptron (MLP) composed
by 1D convolution filter uses the combination of initial PCD seed
and folding features to generate sparse PCD seed. Upsampling seed
to a dense PCD is difficult due to the limited structure information
in seed. Thereby, a Decoder (Figure 1[e]) applies DGCNN [5] to ex-
tract local PCD shape from seed. The upsampling layer can correctly
reconstruct object shape by embedding regional features with dupli-
cated detailed features. By repeating the DGCNN and upsampling
process, we finally achieve dense, high-quality PCD.

Loss Function: Deep learning model requires loss function to
backpropagate and update network parameters. mmWaveNet com-
bines Chamfer Distance (CD) and Earth Mover’s Distance (EMD)
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to optimize model weights. CD is a nearest-neighbour-based method
and focuses on quantitative difference, while EMD mainly measures
the global distribution difference. They are defined as:
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where S; and Sy are the point sets, Ny and N, are the number of
points in them, and ¢ : S; — S2 is a Bijection function to exactly
map points of Sy to points of Sp. Combining CD and EMD, the final
loss function for mmWaveNet is defined as: Loss = Lcp + LEyp.-

3 PRELIMINARY RESULTS

We test our model on indoor datasets from [3], consisting of 1,274
indoor PCD from 13 different environments. We use 1,109 PCD
samples for training and 165 PCD samples for testing. Figure 1(f)
shows an example of generated PCD of MilliPCD and mmWaveNet.
MilliPCD filters out weak reflections on intensity map and loses
object structure features in detail, especially in the far distance. But
mmWaveNet can correctly predict the shape of the wall and produce
PCD similar to the ground truth. Figure 2 further shows the CDF
and quantitative performance of mmWaveNet, where mmWaveNet

achieves better performance than a state-of-the-art method. mmWaveNet

achieves 0.198 m on CD (median) and 0.344 m on CD (90”’ per-
centile), which improves 22.7% and 30.6% compared to MilliPCD.
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Figure 2: CDF for quantitative performance

4 CONCLUSION AND FUTURE WORK

This work proposes mmWaveNet, an advanced deep learning model
which directly utilizes mmWave reflection signal for mmWave PCD

reconstruction. Without mmWave signals processing algorithm, mmWaveNet

can generate high-quality PCD and performs better than MilliPCD
in indoor environments. While the indoor dataset has limited va-
riety, the outdoor environment includes more complicated objects,
terrain, and weather. In the future, we plan to extend mmWaveNet to
reconstruct PCD for different outdoor environments.
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