Exploring the Potential of Residual Networks for Efficient Sub-Nyquist Spectrum Sensing

Hem Regmi and Sanjib Sur hregmi@email.sc.edu

The 19th International Conference on Wireless and Mobile Computing, Networking and Communications June 21-23, 2023, Montreal, Canada

College of Engineering and Computing

National Science Foundation

CAREER-2144505 CNS-1910853 MRI-2018966

Research Motivation

Scarcity of Spectrum Resources

Increased number of active IoT devices will require additional spectrum resources for communication

Source: https://exploaingtopics.com/blog/lot-stats

Sparse Spectrum Utilization

Spectrum Holes

Total spectrum

Maximizing Spectrum Utilization

Mobile devices need to detect spectrum hole before they can utilize it

High-Frequency Spectrum Detection

High-frequency detection requires a high-frequency ADCs, but they are costly and not available on IoT/mobile devices

High-Frequency Spectrum Sensing on Mobile Devices

Mishali, et al., 2011

Multicoset Sampling Principle

Multicoset Sampling Principle

Signal Aliasing

Even though the helicopter is taking off, the blades do not seem to be moving at all

Source: Pinterest

Aliasing occurs because high-frequency components overlap with low-frequency components due to low-frequency sampler

Hassanieh, et al., 2011

Most of the samples are not recorded during sampling, which need to be recovered for signal reconstruction

Anti-Aliasing With Downsampling

Residual Networks: Unit Block

Residual Networks for Signal Recovery

Feature Extraction Network

Summary of Datasets

- Modulation detection is part of the signal detection and recovery
- Using aliased samples to detect the modulation of the signal
- Source of dataset: <u>http://www.gbsense.net/challenge/</u>

Single Frequency: Signal with several MHz bandwidth with the unknown center frequency between [-600, 600] MHz

Double Frequency: Two signals with several MHz bandwidths with the center frequency between [-600, 600] MHz, 24 sub-bands

Our Approach for Single Frequency Signal

Feature Extraction Network

Modulation Prediction for Single Frequency

Our Approach for Double Frequency Signal

Feature Extraction Network

Modulation Prediction for Two Frequencies

Network Implementation

Platforms

Model size

Performance Evaluation

Single Frequency

- Number of train samples: 124K
- Number of test samples: 31K
- Accuracy of modulation type: 95%

Double Frequency

- Number of train samples: 102K
- Number of test samples: 10K
- Accuracy of position of the signals: 99%
- Accuracy of modulation type: 41%

Conclusion

- Our system uses residual networks to overcome aliasing and insufficient samples for modulation detection
- Residual networks detect modulation type accurately for single and double frequency signals for signal recovery

Thank you!

Check out our group website for more details

Contact: hregmi@email.sc.edu

