Exploring the Potential of Residual Networks for
Efficient Sub-Nyquist Spectrum Sensing

Hem Regmi and Sanjib Sur
hregmi@email.sc.edu

The 19th International Conference on Wireless and Mobile
Computing, Networking and Communications

June 21-23, 2023, Montreal, Canada

NA L WA
A £ 8™ National

—~ AR N » Science
]ﬁ UNITQEET?Y o B 4 Foundation
Wi MSDB South Carolina CAPEER 2144505

2023 College of Engineering CNS-1910853
and Computing M RI_2018966



mailto:hregmi@email.sc.edu

Research Motivation




Scarcity of Spectrum Resources

2.6 °.66 Non-loT and loT active devices
Billion from 2010 to 2025

Number of
active loT devices
worldwide
as of 2020

Increased number of active loT devices
will require additional spectrum resources for communication




Sparse Spectrum Utilization

Microsoft Observatory Seattle Monday 01/14/2013 10-11am
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Spectrum Holes
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Maximizing Spectrum Utilization

Mobile devices need to detect spectrum hole
before they can utilize it




High-Frequency Spectrum Detection
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High-frequency detection requires a high-frequency ADCs,
but they are costly and not available on loT/mobile devices




High-Frequency Spectrum Sensing on Mobile Devices
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Multicoset Sampling Principle

Original Signal




Multicoset Sampling Principle

—>» Recorded Samples
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Multicoset Sampling Principle

—>» Recorded Samples
Dropped Samples
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Multicoset Sampling Principle

—>» Recorded Samples
Dropped Samples
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Challenges in Signal Reconstruction

Signal Insufficient
aliasing samples




Signal Aliasing

Even though the helicopter is taking off,
the blades do not seem to be moving at all




Signal Aliasing
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Sub-sampling signal
by 3x in time domain

Aliasing occurs because high-frequency components overlap with
low-frequency components due to low-frequency sampler




Insufficient Samples

S O § S O e e O

1 11 16 24 27 31 37

e ——————————
Number of channels = 40, Number of cosets = 8




Insufficient Samples
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Number of channels = 40, Number of cosets = 8

Most of the samples are not recorded during sampling,
which need to be recovered for signal reconstruction




Anti-Aliasing With Downsampling

Bucketization
b-sample by 3)
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Residual Networks: Unit Block
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Residual Networks for Signal Recovery
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How ReS|duaI Network Works?
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Summary of Datasets

« Modulation detection is part of the signal detection and recovery
» Using aliased samples to detect the modulation of the signal
« Source of dataset: http://www.gbsense.net/challenge/

Single Frequency: Signal with several MHz bandwidth with the
unknown center frequency between [-600, 600] MHz

Double Frequency: Two signals with several MHz bandwidths with
the center frequency between [-600, 600] MHz, 24 sub-bands



http://www.gbsense.net/challenge/

Modulation Types

Possible Modulation Types: APSK16, APSK32, APSK64, ASKS,
BPSK, OQPSK, PSK16, PSK8, QAM128, QAM16,
QAM256, QAM64, QPSK (Total: 13)
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Single Frequency Signal




Modulation Types

Possible Modulation Types: APSK16, APSK32, APSK64, ASKS,
BPSK, OQPSK, PSK16, PSK8, QAM128, QAM16,
QAM256, QAM64, QPSK (Total: 13)
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Modulation Types

Possible Modulation Types: APSK16, APSK32, APSK64, ASKS,
BPSK, OQPSK, PSK16, PSK8, QAM128, QAM16,
QAM256, QAM64, QPSK (Total: 13)

Double Frequency Signal
-600 MHz 600 MHz




Modulation Types

Possible Modulation Types: APSK16, APSK32, APSK64, ASKS,
BPSK, OQPSK, PSK16, PSK8, QAM128, QAM16,
QAM256, QAM64, QPSK (Total: 13)
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Double Frequency Signal
-600 MHz 600 MHz




Our Approach for Single Frequency Signal
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Our Approach for Double Frequency Signal
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Network Implementation

Platforms ﬁ
( ) nVIDIA

Model size ~ 48 MB




Performance Evaluation

Single Frequency
* Number of train samples: 124K

* Number of test samples: 31K
* Accuracy of modulation type: 95%

Double Frequency

* Number of train samples: 102K
Number of test samples: 10K
Accuracy of position of the signals: 99%
Accuracy of modulation type: 41%




Conclusion

Our system uses residual networks to overcome aliasing
and insufficient samples for modulation detection
Residual networks detect modulation type accurately for

single and double frequency signals for signal recovery

Thank you!

ol il Check out our group website for more details
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