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Abstract—Millimeter-Wave (mmWave) networks rely on carefully
placed small base stations called “picocells” for optimal network
performance. However, the process of conducting site surveys to
identify suitable picocell locations is both expensive and time-
consuming. The current low-cost approaches for indoor survey-
ing are often unsuitable for outdoor environments due to the
presence of various environmental factors. To address this issue,
we present Theia, a drone-based system that predicts outdoor
mmWave Signal Reflection Profiles (SRPs) and facilitates picocell
placement for optimal network coverage. The drone platform
integrates optical systems and a mmWave transceiver to collect
depth images and mmWave SRPs of the environment. These
datasets are fed into a machine learning model that maps the
depth data to SRPs, allowing SRPs to be predicted at previously
unseen parts of the environment. Theia then leverages these
predictions to identify optimal picocell locations that maximize
network coverage and minimize link outages. We evaluate Theia
in three large-scale outdoor environments and demonstrate that
the proposed design can generalize the deployment method with
a little refinement of the model.

Index Terms—Drone; Millimeter-Wave; Outdoor Picocell De-
ployment; Deep Learning.

I. INTRODUCTION

5G technology has been rapidly proliferating over the last
few years, and it is expected to support the connectivity of
massive numbers of smart devices worldwide [1]. As the
use of 5G increases, the need for proper network infrastruc-
ture deployment becomes ever more important [2]. 5G uses
millimeter-wave (mmWave) as its major wireless technological
component and provides connectivity with picocells. Picocells
are small, short-range base stations with the ability to produce
higher data rates than traditional networks. However, there are
multiple challenges in finding optimal locations for deploying
these picocells: Picocells are easily obstructed by the environ-
ment in Line-of-Sight (LoS) paths, and hence they need to rely
heavily on Non-Line-of-Sight (NLoS) paths. This is especially
apparent in urban settings where NLoS paths are much more
frequent due to dense buildings and infrastructure [3]. How-
ever, due to the high operating frequencies of picocells, many
objects in the outdoor environment do not reflect the signals
strongly, and therefore availability of NLoS paths becomes a
challenge. So, deployers must find the locations where strong
NLoS paths are available most of the time during LoS path
unavailability. Existing approaches to finding such locations
rely mostly on thorough site surveys or propagation models.
They both aim to measure or model the mmWave Signal
Reflection Profile (SRP) of different locations, and based on

the estimated SRP, they find the picocell locations that will
likely achieve high signal strength through NLoS paths.

However, site surveys are expensive [4], and propagation
modeling and simulations are often unable to faithfully repre-
sent the environment at higher wireless frequencies. Besides,
manual site surveying of a large-scale outdoor environment
is not only time-consuming but also oftentimes infeasible.
Past works have aimed to reduce survey time to find optimal
picocell locations [5], [6], but they are limited to small-
scale indoor environments, and hence do not address the
difficulties present in outdoor environments such as area-span
of the environment, foliage, number and height of buildings,
pedestrian and automotive traffic, etc.

In this work, we propose Theia, which aims for easier
surveying of outdoor environments and enables the deployers
to identify near-optimal picocell locations for deployment.1

Theia aims to identify the SRPs of different locations in a way
that allows network deployers to survey an environment faster
while still maintaining the accuracy of traditional surveys.
Since SRPs include the strength of NLoS paths, the network
can be more effective in dynamic outdoor environments by
finding locations that maximize the SRP. Instead of measuring
the SRP from all locations, Theia leverages the visual informa-
tion of the environment and models the complex relationship
between the visual to mmWave SRP. Since it is intuitive
that similar-looking objects likely reflect mmWave signals
similarly (e.g. varying types of foliage, cars, buildings, etc.),
the model could predict the SRP from unseen viewpoints in the
environment, requiring less tedious measurement from the de-
ployer. To design the model, Theia leverages the advancements
of deep learning frameworks and builds a customized deep
convolutional neural network that can predict the mmWave
SRPs from visual data of the environment. These predicted
SRPs are then used to find the picocell locations that will
maximize the availability of the NLoS paths.

We implement and evaluate Theia with a custom-built
platform for data collection. The platform uses a DJI Matrice
100 Drone [7] with a DJI Guidance System [8] to collect
the depth images and poses of the system, and a mounted
77 GHz mmWave transceiver [9] is used for collecting SRPs.
Our experimental results across 6 outdoor environments over
a period of 4 months with 44 GB of collected data (∼144,000

1Theia is the Greek goddess of sight and vision which is analagous to our
goal of surveying large outdoor environments.



Figure 1: (a) Point Cloud Data (PCD) of an outdoor environment. (b–c) Depth images and mmWave SRPs from 2 locations in the environment.

samples), show that Theia achieves a median error of 3.73
dB in SRP prediction with a model trained for a unique
environment. Furthermore, Theia only requires 5 minutes of
survey data in a new environment with different amounts and
types of objects to reach similar prediction performance. For
picocell deployment, Theia can achieve a 2.76× reduction in
link outage likelihood in multiple environments compared to
random and common-sense deployment strategies.

In summary, we have the following contributions: (1) We
build a drone system for automatically collecting and synchro-
nizing visual data and mmWave SRPs from outdoors. (2) We
design a custom deep learning model for predicting SRPs in
the environment, which allows the network deployer to find
near-optimal picocell locations to improve the performance
and reliability of an outdoor mmWave network. Our results
demonstrate that Theia can generalize in different outdoor
environments with little fine-tuning.

II. BACKGROUND AND CHALLENGES

A. Picocell Fundamentals and SRP

MmWave networks rely on picocells to provide wireless
connectivity within a limited range of approximately 10-12
meters [10]. Due to the presence of obstacles on the LoS path,
NLoS paths are frequently used, underscoring the importance
of determining the SRP resulting from the reflectors present
in the environment. The SRP can be obtained by sending a
signal at varying frequencies in the given environment. By
determining the time taken for the reflected signal to return,
different distances can be estimated. To accomplish this, Theia
utilizes a mmWave transceiver to send an extensive full-
bandwidth signal into the environment, containing multiple
reflecting points. The total reflected signal received when the
signal bounces back is then measured by summing the time
delays of the signal. Applying Fast Fourier Transform (FFT)
to this signal enables us to obtain various signal strengths from
different object distances [11]. Theia’s transceiver is equipped
with multiple transmit and receive antennas, allowing us to
obtain a multi-channel SRP by emitting a signal from each
transmit antenna and measuring the reflected signal at each
receive antenna. Since each antenna is positioned differently,
each signal differs and has a virtual pose of origin based on

the position of the transmit and receive antennas. Figure 1
shows an example outdoor environment and the visual data
and mmWave SRPs from two different locations.

B. Propagation Survey Challenges

To ensure optimal placement of picocells in outdoor envi-
ronments, precise planning is crucial. Failure to locate pico-
cells in the right position can result in various issues, includ-
ing capacity loss and obstruction by environmental objects.
Existing approaches to finding such locations traditionally
relied on two main approaches: site surveys and propagation
models. However, both of these methods have significant
drawbacks. Site surveys are expensive and time-consuming
[4], making them impractical for outdoors. Propagation mod-
eling and simulations are often inaccurate, especially at higher
wireless frequencies, where the environmental reflection is
more complex. Although recent surveying methods reduce
time and cost, they are limited to indoor environments [5],
[6]. These methods are inadequate for outdoor environments
because they do not consider environmental factors such as
building height, population density, and limited area coverage,
which can hinder their effectiveness.

III. Theia DESIGN

A. Overview

Theia allows for easy SRP prediction in outdoor environ-
ments, which enables network deployers to achieve optimal
picocell placement with predictable performance. To get the
SRP predictions, first, the deployer uses a DJI Matrice 100
Drone with a DJI Guidance System [7], [8], which is equipped
with a depth sensor, to collect pose data and depth images
of an outdoor environment by flying the drone. Second,
as the deployer is flying the drone, a co-located mmWave
transceiver measures the SRPs of the environment by steering
the mmWave beam. Finally, Theia uses depth data and SRPs
to learn the relationship between objects in the environment
and their reflections, which facilitates the prediction of full
SRPs for the environment.

To achieve this, Theia uses a Convolutional Neural Network
to map the pose and depth image to the reflection using
supervised learning. Figure 2 shows an overview of the
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Figure 2: Overview of the Theia system.

Theia system. The depth images and drone poses are first
synchronized with the measured SRPs collected at different
positions during flight. The transceiver’s beam pattern is then
masked over the depth image and paired with the measured
pose and SRP, to train the prediction network. The network
uses thousands of collected data pairs to learn the relationship
between the visual data and measured SRP and harnesses this
to predict the SRPs at different environmental positions. This
model is generalizable to other outdoor environments with
similar objects. Finally, the predicted SRPs can be used for
finding picocell placements with predictable performance.

B. Visual Data to SRP Relationship

Before developing a model for SRP prediction from visual
data, we first investigate the relationship between visual data
and SRPs to test the hypothesis: similar objects produce sim-
ilar mmWave reflection profiles (e.g. varying types of foliage,
cars, buildings, etc.), so that the model can learn SRP from one
part of the environment and predict SRP in another similar-
looking part. To test this hypothesis, we compute the Structural
Similarity Index Measure (SSIM) [12] between two depth
images to represent visual similarity and the Mean Squared
Error (MSE) of the corresponding reflections to represent SRP
similarity. We conduct this analysis on data pairs from six
environments across three outdoor spaces, generating ∼144K
data pairs. For details on each environment see Table I.
Figure 3 shows a trend between visual data and SRPs, but
the relationship is complex and nonlinear. For example, in
some environments, like A.2 and B.1, the relationships look
similar, but in other environments, they are quite different.
A regression model would not capture this trend, and differ-
ent patterns across environments make a single model non-
generalizable. To capture such complex relationship, we adopt
a deep learning approach in a generalizable manner, allowing
us to predict SRPs from angles and points we did not observe
directly, saving time during surveying.

C. SRP Prediction using DCNN

To learn the mapping between depth images and reflections,
Theia utilizes a Deep Convolutional Neural Network (DCNN).
The problem of predicting signal strength in an environment
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Figure 3: Visual data and SRP relationship across 6 environments.
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Figure 4: (a) Data synchronization for SRP, pose, and depth image.
(b) Constructing DCNN input (θ is 60◦).

is in the same vein as the image super-resolution problem
[13], [14], [15], [16], [17], with the measured reflections
corresponding to low-resolution images where the reflections
are measured from a limited number of positions and sent
through a DCNN, with the positions acting as labels in order
to reconstruct the higher resolution images. To this end, we
feed our depth image as input to the DCNN with the SRP
collected at the same pose being the ground truth. Furthermore,
we include the antenna pose in the network since the SRP can
be affected significantly by how the deployer is holding the
device. Finally, we use the MSE between the predicted and
ground truth SRPs as the loss function for the network.

1) Data Preprocessing: To facilitate proper training, Theia
first synchronizes the raw data, then removes noise and un-
necessary information (see Figure 4). Since a tight hardware-
level synchronization does not yet exist between the drone,
transceiver, and depth imager of our data collection platform,
we implement a software-level synchronization. Since the
systems do not start simultaneously, and the flight pose and
depth imager have a lower sampling rate than the transceiver,
we must process the data to align it. In particular, the flight
pose has a rate of 20 samples per second (sps), the depth
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Figure 5: Back-to-back correlation of mmWave and depth data
samples are used to confirm proper synchronization between the
mmWave reflections and depth images.

imager has a rate of about 6 sps, and the transceiver has a
rate of 25 sps. To rectify the differences in start time, we
have each system record the start timestamps, and we use the
difference in start times to align the data. Once the flight,
depth, and transceiver data are aligned, we use interpolation
and decimation to match the rates across all three systems. We
have chosen to specifically use piecewise-cubic interpolation
and median decimation because they produce good results.

Since it is infeasible to determine a time cutoff when
transceiver samples are related to each depth image due to the
significant difference in sampling rates, we use an overlapping
time window approach to get the transceiver samples closest
in time to the depth image and take the median of those
samples as the corresponding sample for the depth image,
as shown in Figure 4(a). Also, back-to-back samples will be
similar during the stable 10 seconds at the beginning of data
collection. To verify whether the data is synchronized, we use
the intuition that back-to-back samples will be similar until
the drone starts moving. We first correlate the back-to-back
samples using Mean Squared Error (MSE) for the transceiver
and drone pose data and Structural Similarity Index Measure
(SSIM) [12] for the depth data. Then, by looking at where the
correlation changes significantly, we can identify the point in
the time axis where the drone started to move, as seen in Figure
5. We do not use the back-to-back correlation to synchronize
as the threshold that must be reached to determine if the drone
has started varies from environment to environment and thus
would require tuning for each new data collection. Figure
6 shows two examples of the depth and 12 corresponding
mmWave SRPs from each virtual channel. Each example is
from a different pose in two different environments after
synchronizing the data.

Now that the data is properly synchronized, we prepare
the data for input into the DCNN model. Because of the
transceiver’s specific signal emission (beam) pattern [18], [19],
not all of the information in the depth image will contribute
equally to the measured SRPs. To account for this, we first
get the Inverse Depth Image (IDI) to explicitly tell the DCNN
to prioritize closer objects when learning what contributes
to strong reflections. The IDI is the inverse depth value at
each pixel. We then need to include the mmWave transceiver’s
beam pattern [20], a 2D matrix with the normalized transmit

and receive power for different elevation and azimuth angles.
However, since the depth sensor’s Field of View (FoV) is much
smaller, the beam pattern is limited to the FoV that overlaps
with the depth sensor’s. Then, via dot multiplication, we mask
the IDI with the FoV-adjusted beam pattern, getting a Masked
Inverse Depth Image (MIDI). The MIDI encodes information
both about the reflectivity of objects and takes into account
the properties of the transceiver. The MIDI is then associated
with a pose and SRP, which forms the input and output data
for the DCNN, as shown in Figure 4(b).

2) DCNN Model: Although preprocessing allows us to
remove unnecessary features and prioritize the important ones,
learning a mapping from the MIDI and pose to the SRP is
still challenging as the relationship is complex and non-linear
(see Figure 3). Machine learning models have been used to
tackle such non-linear tasks, and with recent developments in
wireless use-case deep learning [5], [21], [22], [23], we find
this is a suitable method to build a model for Theia. Since
the SRP is just a vector of signal strength values, we build
a DCNN model that uses a MIDI and pose as inputs and
produces the associated SRP as the output. Now with the use of
Convolutional layers [24], Theia can extract features from the
MIDI, with its image-like structures, and feed them into Fully
Connected (FC) layers for SRP prediction [25]. With so many
Convolution and FC layers, the DCNN will have millions of
parameters and introduce significant memory and computation
constraints for Theia [26]. For this purpose, we select a model
with lower memory and computational requirements that does
not sacrifice accuracy.

To find a model with lower memory use and shorter training
time, as well as a better SRP prediction accuracy, we evaluated
multiple popular models as Convolution layers: VGG16[27],
EfficientNet[28], MobileNetV2[29], MobileNetV3-Large, and
MobileNetV3-Small[30] and ranked them by their MSE loss
on test samples. We choose MobileNetV3- Large as it has the
best performance of all the models tested and has memory
usage and training time only second to MobileNetV3-Small.

MobileNetV3 is designed for mobile devices with lower
memory and computational resources and builds off of its
predecessor MobileNetV2, which uses depthwise separable
convolutions, allowing lightweight filters to replace full con-
volution layers, significantly reducing the computational cost.
MobileNetV2 also replaces standard residual blocks with in-
verted blocks to significantly reduce the required tensors for
storing intermediate results, which uses memory more effi-
ciently. MobileNetV3 then builds off its predecessor through
the use of neural architecture search [31], [32], which utilizes
a recurrent neural network to generate more computationally
efficient network architectures.

Since the standard input of MobileNetV3-Large is a 3-
channel 224×224 RGB image, we customize it for Theia.
The MIDI in Theia is a monochrome 230×246 image, so
we concatenate the MIDI across the 3 channels to generate a
230×246×3 input that we supply to the MobileNetV3-Large.

Since MobileNetV3 is designed and trained on the ImageNet
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dataset [33] for image classification, it will not achieve Theia’s
goal of predicting SRPs as that is a regression task. For
this reason, we trim MobileNetV3 to its convolution layers
for feature extraction, then feed these to the customized
FC layers for regression. We also provide the pose in the
second to last FC layer since mmWave SRP also depends
on the transceiver’s location and rotation (i.e., pose). Thus,
including the pose directly in the DCNN FC layer increases
the network’s generalizability in robust environments. Figure
7 shows the DCNN model architecture in Theia.

D. Picocells Deployment from the Estimated SRPs

Due to the narrow beamwidth of the mmWave, even a
minor blockage, such as hand movement, building structure,
or another person passing by can break the link between the
picocell and the client. Frequent link drops lead to a drop
in the effective data throughput, increase the network latency
and a need for multiple beam alignments. Even though it is
always preferred to have a LoS path because it provides higher
SNR, we can increase network reliability by considering NLoS
paths, where a picocell can steer its beam toward an available
strong reflector and establish the link to provide seamless
coverage. SRPs provide information about strong reflectors in
the environment, and we can use them to place picocells to
maximize the use of the strong reflectors.

Then, to identify the picocell locations, we adopt a place-
ment algorithm similar to that proposed in [5], which employs
a Ray-tracing approach [34] to simulate separate transmitter
and receiver and incorporate realistic reflections using the
predicted SRPs. We derive three placement strategies, based

on different coverage objectives and apply them to determine
the picocell locations for Theia. The first strategy, “average,”
aims to provide higher mean throughput across all clients
in the environment. The second strategy, “variance,” aims to
achieve nearly equal signal strengths across different parts of
the environment to improve fairness. The third strategy, “link-
outage,” involves placing picocell locations to ensure a certain
level of signal strength across most of the environment to
minimize the likelihood of outages.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

Hardware Setup: Current commodity 5G mmWave devices
such as phones do not provide raw SRPs, so we opt to create a
custom data collection platform to get the SRPs and to evaluate
Theia. Our data collection platform comprises three systems
that work in parallel to survey outdoor areas. (a) The flight
system uses DJI’s Onboard SDK [35] along with a USB to
UART connection between the drone and laptop to control a
DJI Matrice 100 Drone [7] along a programmable flight path
and saves the pose data. (b) The guidance system uses DJI’s
Guidance SDK [36] to collect readings from the DJI Guidance
System [8], including stereo grayscale visual and depth (RGB-
D) images as well as flight odometry samples and saves them
over USB to the laptop. (c) We mount a TI IWR1443BOOST
76-81GHz mmWave transceiver and a DCA1000EVM capture
card [9], [37] on top of the drone that is controlled and
powered over USB and saves data over an ethernet cable.
The transceiver’s 3 transmit and 4 receive antennas can collect
SRPs across 12 virtual channels continuously. We placed the
transceiver so that the drone’s propellors would not damage



Figure 8: Data collection platform with a 76–81 GHz mmWave
transceiver mounted on a DJI Matrice 100 drone equipped with DJI
Guidance depth and grayscale visual sensors.
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Figure 9: Different drone waypoint paths used for data collection:
(P1) Zigzag with static altitude; (P2) Angled zigzag with altitude
change halfway through a pass; and (P3) Zigzag with altitude change
halfway through a pass. For the first half of the pass, the drone
performs a 30◦ clockwise (CW) yaw rotation at each corner. For
the other half of the pass, each rotation is counter-clockwise (CCW).

it; however, this resulted in a significant reflection from the
drone around 0 m in the measured SRPs.

Since we are in the process of acquiring FAA certification,
and due to difficulties in sending mass amounts of data
wirelessly, we have opted to keep a wired, 2 meter connection
between the drone and laptop. The data collected is within 5
meters of the ground and ensures the data is representative
of the ground-based users that Theia intends to optimize
for. The cables are bundled together and managed in a way
that prevents damaging them with the drone’s propellers and
reduces the likelihood of them being unplugged mid-flight
which would cause data loss.

The transceiver uses a 764 MHz bandwidth with a carrier
frequency of 77.38 GHz. We use the following parameters for
our SRP measurements: start frequency, 77GHz; frequency
ramp slope, 29.98 MHz/µS; number of ADC samples, 256;
ADC sampling rate, 10 Msps; sweep duration, 60 µs; pulse
repetition rate, 25 Hz; and maximum receive antenna gain,
30 dBi. The measured SRP for each virtual channel is a 256
element vector. Each SRP element has a resolution of ∼0.1961
m [38]; thus, the device can collect reflections up to ∼49.73
m. Since the difference between the transceiver and drone
positions is static during every data collection, this offset can
be used for calibrating the transceiver’s pose.

Real Data Collection: Using a laptop that is connected to
the drone, a Matlab program runs to start the flight and
guidance systems to ensure that there is no issue with the

drone and its sensors. Next, the transceiver goes through its
startup processes. When all the systems are ready to go,
the drone waits 10 seconds, takes off, confirms sane output
from the pose sensor, and follows the programmed flight
pattern while the guidance system and transceiver record
their measurements. Despite using commercial-off-the-shelf
components, a hardware-level synchronization does not yet
exist, so these systems do not start at the same time and they
have different sampling rates. However, recall that we address
these synchronization issues in preprocessing (Section III-C).
We have chosen to use a combination of zigzag patterns, which
consists of a forward and backward pass. The forward pass is
shown in Figure 9, and the backward pass is the forward pass
in reverse. With a selected path and varying yaw angles, we
survey the area for a 10-minute duration, gathering on average
4800 unique transceiver poses.

During data collection, one person is holding the laptop
and cable leash to the drone to ensure everything is running
properly and the drone does not fly off, while a second
person has the manual controller to keep an eye on battery
life, GPS signal, and manually override the drone, should it
veer dangerously off course. To maximize the data collected
and overcome the limited battery life of the drone platform,
we follow a battery cycling procedure where multiple drone
batteries are kept charged, and after each data collection, a new
one is placed into the drone. This deals with the problem of
limited drone battery life; however, the laptop is still limited
in its own battery life, so when it has reached its limit, we
take the system to a place to charge and, while doing so, take
the time to backup the new data and clean out the old data to
allow for more frequent data collection.

Even with set waypoints, weather and GPS conditions
significantly affect the drone’s ability to follow them, so it
is imperative to check that conditions are clear enough for the
environment in which data is being collected. For example, in
a larger, less trafficked area, higher winds and weaker GPS
may be acceptable, but smaller environments with a lot of
close-by obstacles would need slower wind speeds and higher
GPS activity to avoid crashing. Using tools such as [39] saves
time and system damage is avoided.

Figure 10: Top down view of each outdoor space with rectangles
indicating the area where the drone flew and arrows indicating the
area the drone observed.

We collect datasets across 6 environments in 3 different
outdoor spaces over a period of 4 months. Our spaces are
primarily used as a courtyard and sports field areas with
different sizes and types of objects. For a detailed breakdown



Table I: Different properties of data collection in the 6 outdoor environments.

Environment Drone Path Base Yaw Angle Purpose Elements of Environment
A.1 P1 0◦ Courtyard and Patio Trees, patio tables, patio seating, stairs, handrails
A.2 P1 90◦ CW Courtyard Trees, benches, glass windows
A.3 P2 45◦ CCW Courtyard and Patio Trees, patio tables, patio seating, stairs, glass windows and doors
A.4 P3 0◦ Courtyard and Patio Trees, patio tables, patio seating, glass windows and doors
B.1 P3 0◦ Sports Field Trees, bushes, benches, fences, glass windows and doors
C.1 P1 180◦ CW Sports Field Lounging Area Trees, bushes, picnic table, fences

of each environment, see Table I, and a top-down view of each
outdoor space can be seen in Figure 10. Each environment in
the table takes place in the outdoor space of the corresponding
letter (i.e., each A.# takes place in outdoor space A but with
different paths and starting angle. Since the data is collected
during regular business hours, there could be background noise
from pedestrians. In total, we have collected and processed
over 44 GB of data with ∼144,000 data samples.

Neural Network Training: Theia’s SRP prediction model
is trained and tested using MSE loss. While training, the
network may continue for up to 1000 epochs; however, if
learning stagnates, causing no improvement for 20 epochs
in a row, the network will halt training. We tested multiple
different optimizers and learning rates for our DCNN models
by following [40] and saw that “NAdam” performed the best
with a learning rate of 0.005. We also tested the MSE, L1,
and SmoothL1 loss functions and found that they all produce
similar results, so we chose MSE as the loss function for
our model. The final models are designed and implemented
using the Python programming language and PyTorch 1.10.2
[41] package on a server with AMD EPYC CPU @ 2.8GHz,
264GB RAM with Nvidia’s RTX A6000 GPU [42] to decrease
training time to about an hour for each model.

V. EXPERIMENTAL RESULTS

Evaluation Summary: Theia’s DCNN model predicts SRP
with a median error of 3.73 dB and needs only 5 minutes
of surveying data to fine-tune to new environments. Theia
performs well regardless of the number of mmWave channels
used in training and the path variability of the drone while
surveying the environment. When trained in completely new
outdoor environments, Theia performs identically. Theia’s
picocell deployment performs close to optimal with its “link-
outage” strategy reducing the area without link by ∼2.76×
compared to the Random and Common-Sense methods.

A. SRP Prediction

DCNN Model: To evaluate the performance of Theia’s DCNN
model, we use datasets from outdoor environment A, only
using the samples corresponding to one of the virtual channels.
We preprocess the data to generate input pairs <MIDI, Pose,
SRP>, then randomly choose samples with a 90:10 ratio of
training to testing. We then shuffle the training samples and
feed them into the model. We train the model using MSE loss,
and once training is complete, we input MIDI and pose pairs
from the testing samples to the model to predict the SRPs. We
then calculate the absolute error between the predicted and

ground truth SRPs for the 2145 test samples. Figure 12(a)
shows the SRP error distribution with a median prediction
error of 3.73 dB and 90th percentile error of 9.32 dB.

Multi-Channel Surveying: Since a deployer’s device will
have a fixed number of channels, we evaluate the performance
of Theia when trained with a varying number of virtual
channels. Specifically, the number of channels we chose to
evaluate the performance for Theia are as follows: 1, 2, 3, 4,
6, 9, and 12. For each of the channels, we evaluated them with
the same metrics. As shown in Figure 11(a) all the channels
had similar results. Notably, 6 channels had the lowest median
error of 3.571 dB and had a 90th percentile error of 8.65
dB, and 4 channels had the highest median error of 3.848
dB and the highest 90th percentile error of 9.54 dB. As the
performances of each number of virtual channels tested are
not significantly varying, deployers won’t have to worry about
how many virtual channels a mmWave device has, as it has
minimal effect on the performance.

Drone Path Variability: To explore the importance of data
collection pose variability, we evaluate Theia using data col-
lected with low, medium, and high pose variability (drone
paths P1, P2, and P3 in Figure 9, respectively). For this, we
used data collected from environments A.1, A.3, and A.4,
respectively. We evaluated each pose variance with the same
metrics. As shown in Figure 11(b), we can see that the pose
variability gave a similar SRP prediction error. From these
results, since the errors were within 0.2 dB on both metrics,
the path used to survey an environment appears to have little
effect on SRP prediction. While further testing will need to be
done to understand the impact of pose variability better, these
results show that the deployer will likely not need to worry
about pose variability during surveying.

Survey Time Requirement for Fine-Tuning: To determine
the effect of fine-tuning in a new environment, we evaluate
Theia by testing its performance with varying amounts of
survey time. We train the model on data from environment
A.1, then train it further with data from environment A.2. The
number of training samples from A.2 is based on the amount
of survey time being used for fine-tuning. We then test the
model on data from environment A.2. We first test Theia using
0 minutes of survey time to see the result of no fine-tuning. We
then test with 1, 5, 10, 15, 20, and 25 minutes of fine-tuning.
We evaluate each survey time with the same metrics. Our base
test, 0 minutes of survey time, had a higher median error of
6.341 dB and a 90th percentile error of 13.35 dB, which is
intuited with no fine-tuning. With 1 min of fine tuning, we see
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Figure 11: (a) Effect of the number of Rx-Tx combinations on model performance. (b) Comparing model performance on data with low,
medium, and high pose variability. (c) Effect of survey time on model fine-tuning.
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Figure 12: (a) CDF of SRP prediction error in Env A. (b) Performance of Theia when trained in different environments and tested on unseen
parts of the environment.

that we already reduce the median error to 4.239 dB and the
90th percentile error to 10.44 dB, and with fining-tuning for 5
minutes, we get equivalent performance to when the model is
tested on the same environment as training. 5, 10, 15, 20, and
25 minutes of fine-tuning all had similar performance results,
as shown in Figure 11(c), meaning that there is limited gain
in continuing to fine tune the model with longer survey times.
These results indicate that Theia can adjust to environments
that have never been surveyed. Moreover, the deployer can
save time collecting new samples.

Generalizability to New Environments: We now evaluate
Theia’s performance in different outdoor environments. We
train models for each outdoor space with samples from en-
vironments A.1, B.1, and C.1, respectively. We evaluated the
performance with the same metrics. Despite the differences
between each of the environments, we see in Figure 12(b)
that Theia is still able to predict the SRPs with all errors
within ∼0.1 dB of each other. So, Theia is able to perform
well when trained in new environments without changing the
model’s parameters.

Picocell Deployment Locations from Predicted SRP: With
accurate SRP values, we can build a Ray-tracing method that
will simulate a separate transmitter and receiver; and consider
realistic mmWave reflections. We then use the mean and
standard deviation from Theia’s prediction error as noise onto
the simulated SRPs. This allows us to use realistic errors in our
placements and enable comparison of Theia with the Optimal
method in which the SRPs of the environment are known. We
then follow the 3 deployment strategies, “average,” “variation,”
and “link-outage” [5], to evaluate their performances. We
also simulate three additional deployment methods: “Ran-

dom,” which chooses random positions in the environment
for placement; “Common-Sense,” which places the picocells
at the corner locations; and “Optimal,” which assumes there
is no prediction error on SRPs. Figure 13(a–c) shows the
placement of 64 picocells predicted using the “link-outage”
strategy for each environment, and compares the results to
the “Optimal,” “Random,” and “Common-sense” placements.
The number of picocells is based on the environment size and
estimated number of users, however a robust way to determine
this number is something we plan to explore in the future.
The results show a significant overlap between Theia and
Optimal, meaning that Theia will likely perform comparably
to an optimal deployment. Figure 14(a–c) shows the results for
each strategy in environment A as each environment performed
similarly for the respective strategies. Figure 14(a) shows all
placement strategies as within 5 dB on the median. Figure
14(b) shows that Theia will limit the SRP variation to 0.8 dB
whereas the Random and Common-Sense deployments can get
up to 1.75 dB. Figure 14(c) shows that Theia reduces the area
without links by ∼2.76× compared to Random and Common-
Sense. These results show the importance of accurate SRP
prediction for deploying picocells in outdoor areas.

VI. RELATED WORKS

MmWave Signal Reflection Prediction: Accurately obtaining
signal strength maps is crucial for planning and operating
networks, but it is often expensive and prone to errors for
both carrier and crowdsourcing companies [43]. While the
Friis path loss model [44] is effective for lower frequencies,
it fails at high frequencies due to the small wavelengths that
prevent diffraction when hitting obstacles [45]. Propagation
simulators [46], [47], [48], [49] are commonly used for low-
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Figure 13: Picocell locations estimated by Random, Commonsense, Optimal, and Theia deployment strategies using the link-outage method.
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Figure 14: Deployment performance metrics for the environment A considering; (a) Average signal strength at a location. (b) Signal strength
variation in the environment. (c) Distribution of portion of the area without any link.

frequency networks, but extending such models to mmWave
frequencies has been challenging [50].

To address this issue, Argus [5] has developed a machine
learning augmented system that accurately predicts mmWave
signal reflection in less time and is generalizable across
multiple indoor environments. However, it does not account
for outdoor obstacles such as cars, buildings, and pedestrians
that affect diffraction nor does it consider the large scale
of outdoor environments. Existing works, such as Lumos
5G [51], have attempted to predict 5G outdoor signal using
Google Maps and RNN, but these methods lack consistency
in client features and do not generalize well across different
outdoor environments. In contrast to these existing works,
Theia addresses the challenge of obtaining accurate SRPs
in outdoor environments by measuring SRPs from sparse
locations in the environment using a drone-based platform.
Furthermore, Theia’s deep learning model is trained using on
the dataset collected by the drone, and predicts SRP across
multiple outdoor environments accurately.

MmWave Network Deployment: Recall that 5G planning
has been done using empirical techniques and thorough sur-
veying by hand. However, it is very meticulous, expensive, and
time-consuming. Also, in large-scale outdoor environments, it
may not even be feasible to survey every nook and cranny by
hand. But, these techniques are still being used by many phone
companies and the Federal Communications Commission.
One approach to reduce time and cost uses ray propagation
simulators to determine how signals are affected by obstacles
and give a detailed map of signal strengths in the environment

[52], [53], [54]. However, these methods are limited by the
specific frequencies simulated since NLOS signal reflectivity is
frequency-dependent. Other methods like [5], [55], [56], [57]
use reflection information collected in indoor environments
at various frequencies to determine the best locations for
network infrastructure. However, outdoor environments have
many factors such as area-span, foliage, number and height
of buildings, and pedestrian and automotive traffic, which
indoor environments do not. By using Theia, data can be
collected easily in varied outdoor environments then use its
picocell deployment method to enable the placement of 5G
infrastructure in an expedited manner without compromising
performance.

VII. CONCLUSION

In this work, we present Theia, a system for accurate
predictions of mmWave signal reflection profiles in outdoor
environments from unmeasured vantage points by using a deep
learning model trained on data collected from a drone-based
survey platform. Our experimental results show that Theia per-
forms well across multiple large-scale outdoor environments
and can fine-tune to new environments with as little as 5
minutes of survey data. Theia’s SRP prediction can accurately
estimate picocell placements with optimal coverage and enable
reliable and robust outdoor mmWave networks.
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