D3PicoNet: Enabling Fast And Accurate Indoor D-Band Millimeter-Wave Picocell Deployment

Hem Regmi and Sanjib Sur hregmi@email.sc.edu

24th IEEE International Symposium on a World of Wireless, Mobile, and Multimedia Networks Boston, June 12-15, 2023

College of Engineering and Computing

National Science Foundation

CAREER-2144505 CNS-1910853 MRI-2018966

Research Motivation

Emerging Applications Stress Wireless Networks

D-Band: 110 GHz to 170 GHz

Millimeter-wave (30 GHz to 300 GHz)
Wavelength: 10 mm to 1 mm

Challenges of Millimeter-Wave Networks

Path loss

MacCartney, et al., 2013

Challenges of Millimeter-Wave Networks

LTE coverage area

Moayyed, et al., 2021

 Were
 Note

Moayyed, et al., 2021

5G-NR coverage area High frequency, small coverage

Challenges of Millimeter-Wave Networks

We must deploy more picocells carefully for reliable connectivity

Indoor Environment

Indoor Environment

Line-of-Sight (LoS) Path

Non-Line-of-Sight (NLoS) Path

It highlights the need for correct picocell deployment locations

How can we deploy picocells correctly based on surrounding reflectors?

Effect of Multiple Picocell Locations

Effect of Multiple Picocell Locations

strong reflector 3

strong reflector 4

Effect of Multiple Picocell Locations

LOS is blocked

picocell

strong reflector 4

Brute-Force Search?

Brute-Force Search?

Understanding the Environment

How visual camera sees

How mmWave device sees

Can we use visual camera input to predict Signal Reflection Profile (SRP)?

Our Proposed Approach

Our Proposed Approach

Different Field-of-View (FoV)

Different Field-of-View of visual AR device and mmWave device
 Non-linearity between visual depth image and signal reflection profile
 Inaccuracy in transfer-learning to new environment

Data preprocessing is necessary to correct different field-of-view of devices

Angle (degrees)

Data Preprocessing

Different Field-of-View of visual AR device and mmWave device
 Non-linearity between visual depth image and signal reflection profile
 Inaccuracy in transfer-learning to new environment

Complex non-linear models are necessary to predict SRPs from visual depth images

Visual Similarity (SSIM)

Base Model

Different Field-of-View of visual AR device and mmWave device
 Non-linearity between visual depth image and signal reflection profile
 Inaccuracy in transfer-learning to new environment

Semantic features are necessary to adopt the model for new environments

SKP PIEUICIIOII EIIOI (UD)

Semantic Aware Design

Picocells Deployment Algorithm

Data Collection Platform

mmWave ransceiver **AR Device**

Center frequency: 122 GHz
Bandwidth: 1 GHz
AR Google Tango

4.2M data samples
16 diverse environments
420K for training
3.8M for testing

Base Model Performance

Base Model Performance

Average median SRP prediction error is 3.0 dB across 4 diverse environments

Median SRP prediction error reaches 8 dB when tested with different floor of similar surroundings

Improvement in SRP Prediction

Improvement in SRP Prediction

Semantic aware model reduces SRP error from 8 dB to 2.2 dB with limited fine-tuning

Number of Picocells and Coverage Area

D3PicoNet consistently deploys picocells to cover more areas than Random placements

Conclusion

D3PicoNet accurately **predicts SRP** across diverse **environments**

- Semantic-aware model facilitates transfer-learning
- Accurate SRP prediction enables optimal picocell deployment

Thank you!

Check out our group website for more results

Contact: hregmi@email.sc.edu

