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Importance of Sleep

Sleep disorders have been linked with a wide range of

health consequences
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I39% Of Americans Can’t Sleep

Share of respondents who suffered from sleep disorders
in the last twelve months®
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* Problems falling asleep or staying asleep, among others.
2,000-10,000 respondents (18-64 y/o) surveyed per country from Jan.-Dec. 2022.
Source: Statista Consumer Insights

Sleep is essential for proper functioning of human body
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Importance of Sleep Posture

= We have our favorite sleep postures



Importance of Sleep Posture

Your sleep posture can be fatal
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= We have our favorite sleep postures



Importance of Sleep Posture

Normal Sleep apnea

Your sleep posture can be fatal

.

= Supine posture exacerbates sleep apnea
= Sleeping on left side eases heartburn

= We have our favorite sleep postures = Side sleeping aids in digestion

Sleep posture is correlated with many health conditions



Importance of Sleep Posture

Sleep Posture
Monitoring

Sleep posture monitoring is essential for long-term good health



Importance of Sleep Posture

= Sleep posture as an indicator
of Parkinson's progression

Sleep Posture
Monitoring

Sleep posture monitoring is essential for long-term good health



Importance of Sleep Posture

= Sleep posture as an indicator
of Parkinson's progression
Sleep Posture
Monitoring

= Sleep posture monitoring is
required post-surgery

Sleep sture monitoring is essential for long-term good health



Importance of Sleep Posture

= Sleep posture monitoring is
) required to adopt to new posture

SLEEPING ON LEFT SIDE

= Sleep posture as an indicator
of Parkinson's progression

Sleep Posture R

Monitoring

= Sleep posture monitoring is
required post-surgery

Sleep sture monitoring is essential for long-term good health



Importance of Sleep Posture

= Sleep posture monitoring is
Y _I required to adopt to new posture

SLEEPING ON LEFT SIDE

= Sleep posture as an indicator
of Parkinson's progression

Sleep Posture

Monitoring

= Sleep posture monitoring to
provide insight into sleep quality

= Sleep posture monitoring is
required post-surgery

n
Sleep osture monitoring is essential for long-term good health
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Existing Techniques

Expensive and requires Not an accurate

In-clinic (%= overnight stay representation



Existing Techniques

Expensive and requires Not an accurate
overnight stay representation

= Contact-based Systems Cumbersome and brings Expensive

@ . discomfort (pressure mattress > $2500)
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Existing Techniques

Expensive and requires Not an accurate
overnight stay representation

= Contact-based Systems Cumbersome and brings Expensive

@ . discomfort (pressure mattress > $2500)
’ A-”/‘\)

= Contact-less Systems Hindered by low-lighting

" i : Low resolution in Wi-Fi
~ J’ and occlusion




Opportunity: Millimeter-Wave in 5G




Opportunity: Mllllmeter-Wave In 5G

Global 5G Adoptlon to
Hit One Billionin 2022 =~

Forecast of 5G smartphone subscriptions
by region (in millions)
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Opportunity: Millimeter-Wave in 5G

<F 5G mmWave S
Sub-6GHz Bands 24 to 100GHz Bands 100-300GHz Bands

3.4-3.6GHz 24 30 32 40 48 50 60GHz 71 81
Shared Shared Unlicensed




Opportunity: Millimeter-Wave in 5G

mmWave

Smaller Wavelength Works Through- Robust to Low Light
(mm) occlusion and Low Visibility




Argosleep: A Sleep Monitoring System



Argosleep: A Sleep Monitoring System

Works Under Low Light
and Low Visibility




Argosleep: A Sleep Monitoring System

S/

Works h.rough-

Works Under Low Light

and Low Visibility occlusion




Argosleep: A Sleep Monitoring System

<

Works Under Low Light Works Through- Provides Fine-grained
and Low Visibility occlusion Monitoring

Argosleep captures accurate sleep posture without invading privacy



Our Proposal: Argosleep

= Human sleeps infront of
the mmWave device




Our Proposal: Argosleep

= Humansleepsinfrontof = Combines Reflection
the mmWave device from Multiple Antennas




Our Proposal: Argosleep

= Humansleepsinfrontof = Combines Reflection

the mmWave device from Multiple Antennas Machine Learning

Rest State

4

Sleep Posture Predictor



Our Proposal: Argosleep

= Humansleeps infrontof = Combines Reflection
the mmWave device from Multiple Antennas

5G wireless router
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Our Proposal: Argosleep

Human sleeps infrontof = Combines Reflection
the mmWave device

Normalized Envelope (0- g
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Challenges

= Specularity and Weak Reflectivity

5G wireless router

Most of the sig:g(ransmitted

do not reach back to the
mmWave receiver

mmWave signals are highly specular



Challenges

= Specularity and Weak Reflectivity = Low Imaging Resolution
5G wireless router
; @WC y‘F
§
=
e
% (@) Restin left lateral posture (b) Restin supine posture
Most of the signalstransmitted o ,
do not reach back to the Imperceptible images with many
mmWave receiver missing parts

mmMWave signals are highly specular Limited antenna array size



Our Proposal: Argosleep

Human sleeps infront of
the mmWave device

Combines Reflection Pl iy oy e Ty T T R
= Machine Learning

from Multiple Antennas |

Sleep Posture Predictor
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Sleep Posture Predictor: Key ldeas
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Sleep Posture Predictor: Key Ideas

\ /

Reflected signals carry
distinct signatures about sleep
postures in feature space




Sleep Posture Predictor: Key Ideas

@

Reflected signals carry
distinct signatures about sleep
postures in feature space

Challenge: How to learn location of joints for different individuals?




Rest Network

Joint Regressor 21x3
w
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Rest Network predicts location of joints using reflected signals



Rest Network
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Convolutional layers extracts the relevant features



Rest Network
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Most of human body joints follow parent-child hierarchy



Rest Network

Joint Regressor 21x3
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3D location of body joints of an individual is correlated to height



Our Proposal: Argosleep

= Humansleepsinfrontof = Combines Reflection
the mmWave device from Multiple Antennas
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Toss-Turn Detector: Key Ideas

\ /

Human sleeps for a longer
duration and takes toss-turn
for shorter duration




Toss-Turn Detector: Key Ideas

@

Human sleeps for a longer
duration and takes toss-turn
for shorter duration

Challenge: Toss-turn changes are weaker and do not appear sharp




Cross-Correlation based Toss-Turn Detection

= Rest states show nearly zero rate of change in correlation, while toss-turn

states show varlable cha nges Time (S) Time (s)
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State Machine

= [Improves toss-turn detection accuracy

= Provides switching between rest state and toss-turn state
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State Machine switches states using two-state Hidden Markov Model



Argosleep Summary
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Implementation

mmWave Hardware: 77-81 GHz mmWave transceivers, BW 1.62 GHz
TI IWR1443BOOST (Each with one transmit and four receive antennas)

Ground Truth: Microsoft Kinect Xbox One

Volunteer

[ mmWave
Devices

-----------

Depth Sensor




Data Collection

Subject is asked to sleep at approximately 2.5 m distance from the setup
Dataset includes input-output pairs of mmWave reflections and 3D joint locations

Sleep Posture Predictor Data Collection
= We collect datasets from 8 volunteers with 5 diverse poses
= Each experiment takes 60 seconds to complete

Toss-Turn Detector Collection
= We collect data from a single volunteer with multiple toss-turns
= Each experiment takes 60 seconds to complete

In total, 40 K input-output pairs from 8 diverse volunteers



Evaluation: Toss-Turn Detector
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Evaluation: Toss-Turn Detector
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Evaluation: Toss-Turn Detector
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Argosleep detects toss-turn accurately for different antenna settings



Evaluation: Toss-Turn Detector
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Evaluation: Toss-Turn Detector
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Evaluation: Toss-Turn Detector
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Evaluation: Toss-Turn Detector
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ArgoSleep detects toss-turn event accurately



Evaluation: Toss-Turn Detector

1

0.8

0.6

CDF

0.4

0.2

-7 Without HMM ===
with HMM =——

Toss-Turn Detector detects toss-turn events

accurately to detect change in states



Evaluation: Sleep Posture Predictor

Sleep Posture Predictor predicts joint locations for 5 postures



Evaluation: Sleep Posture Predictor
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Evaluation: Sleep Posture Predictor
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Evaluation: Sleep Posture Predictor
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Evaluation: Sleep Posture Predictor
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Evaluatlon Sleep Posture Predictor
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Height Classifier improves the performance of sleep posture predictor



Evaluation: Sleep Posture Predictor
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Evaluation: Sleep Posture Predictor
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Argosleep generalizes well for multiple volunteers



Evaluation: Sleep Posture Predictor
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Conclusion

Argosleep predicts 3D location of body joints with accuracy on par with the
existing vision-based system

Argosleep identifies the toss-turn events accurately

Argosleep brings fine-grained, through-occlusion sleep monitoring into
ubiquitous commodity 5G devices



Conclusion

= Argosleep predicts 3D location of body joints with accuracy on par with the
existing vision-based system

= Argosleep identifies the toss-turn events accurately

= Argosleep brings fine-grained, through-occlusion sleep monitoring into
ubiquitous commodity 5G devices

Thank you!

Please check out our paper for more results:

Any Questions: Please email to aakriti@email.sc.edu
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