

MilliFit: Millimeter-Wave Wireless Sensing Based At-Home Exercise Classification

Edward M Sitar IV, Sanjib Sur

esitar@email.sc.edu, sur@cse.sc.edu

UNIVERSITY OF SOUTH CAROLINA

> College of Engineering and Computing

Human Activity Recognition

- At-home Human Activity Recognition enables many healthcare applications
 - Exercise monitoring

Elderly patient care

 Classification is a key component to unlock these applications, and it is the focus of this work

Current Approaches

Vision-based

Wearable-based

- Reliant on sufficient lighting and visibility
- Privacy concerns

- Inconvenient to users
- Provide limited information

RF-Based Approaches

- Use Wi-Fi signals or RFID tags to detect human activity
- Mostly focused on reconstructing silhouettes or skeletons
- Low resolution due to limited bandwidth for Wi-Fi

MilliFit Intuition and Objective

- Reflected mmWave signal embeds distinctive features about the activity being performed
- Can exploit deep-learning techniques to extract features and classify exercise

MilliFit Overview

- Use only the reflected signal to predict exercise type
 18 classes with combination of static and dynamic exercises
- Data-driven deep learning approach to extract features and classify exercise
- Three signal representations: 1-D FFT reflection, Range-Doppler, Range-Angle

Millimeter-Wave

- Millimeter-Wave (mmWave) has small wavelength and high bandwidth
- Very sensitive to small movements, making it well-suited for activity recognition
- mmWave is the core technology of 5G
- mmWave poised to become ubiquitous in at-home networking devices

Classification Network Design

 Convolutional Neural Network (CNN) with Long Short-Term Memory (LSTM) recurrent component

Extract spatial features for each frame with CNN

Learn temporal variations with LSTM

- Predicts probability that input belongs to each of the 18 classes
- Cross-entropy loss function

Data Collection and Implementation

 Two TI-IWR1443 plus two TI-DCA1000EVM capture mmWave reflections along azimuth and elevation

□ FMCW starting at 77 GHz, increasing linearly over bandwidth of ≈1.8 GHz

• Co-located Kinect collects depth data to isolate the target range

Data Collection and Implementation

- Data samples contain one individual performing one exercise per trial for a duration of 210 frames (8.4 seconds)
- After collection, data is sent to a host PC, where it is processed
- Data processing and classification model implemented in MATLAB

Label	Exercise	Label	Exercise	
* 1	Lunge	10	Leg extension	
*2	Zoom in/out	11	Namaste pose	
3	Arm stretch	*12	Pushup	
4	Arm extension	*13	Squat	
*5	Alternating toe touch	14	Standing	
*6	Alternating one arm up	15	Touch toes pose	
7	Arms up pose	*16	Walk fast	
*8	8 Arms up and down		Walk normal	
9	Hands on waist pose	*18	Walk slow	

Data Processing

- We process the data to acquire three signal representations: 1-D FFT reflection, Range-Doppler, Range-Angle
- Use Kinect depth data to find max range and remove the reflections from beyond that range

Data Augmentation

- Data augmentation can help make deeplearning models more generalizable
- Device noise for wireless sensing is unavoidable in real-world
- We augment our dataset by adding random Gaussian noise to time-series data before processing
- 331 training samples before augmentation
- 1324 training samples after augmentation

Evaluation

- Evaluation of classification performance for each signal representation on augmented and unaugmented datasets
- Classification metrics include F1-score, MCC, precision, recall

			Matthews Correlation Coefficient		Accuracy(%)
			Micro Avg.	Macro Avg.	Avg.
Augmented	Range-FFT	All	0.9359	0.9331	90.69
		Static	0.9324	0.9336	90.11
		Dynamic	0.9386	0.9416	91.14
	Range-Doppler	All	0.9731	0.9735	94.84
		Static	0.9401	0.9417	89.29
		Dynamic	0.9989	0.9989	99.16
	Range-Angle	All	0.9607	0.9609	96.13
		Static	0.9361	0.9371	93.66
		Dynamic	0.9801	0.9799	98.05

- Model had much better performance on dynamic exercises than static ones
- Data augmentation improved performance significantly

Conclusion

- Wireless human activity recognition can enable at-home healthcare applications
 Ubiquitous mmWave signals can be exploited for fine-grained monitoring
- We experimentally show the feasibility of using millimeter-wave wireless signal reflections for exercise classification, without requiring any high-resolution image representations

Please refer to our paper and contact me with questions: esitar@email.sc.edu