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Fig. 1: (a) Experimental setup with a millimeter-wave (mmWave) cascade device and zed stereo camera. (b) Ground-truth image from zed
stereo camera. (c–d) Range-Azimuth heatmaps for dynamic objects (D(r, θ)) and static objects (S(r, θ)) of sample mmWave reflection (w/
dynamic pedestrian marked). (e) Generator network architecture of cGAN to generate mask image with pedestrians. (f) Learning framework
of cGAN with input and gradient flow paths.

Abstract—We present MilliPED, a system that uses a
millimeter-wave device to identify pedestrians at traffic intersec-
tions and enhance road safety during inclement weather, such as
low visibility and heavy rain, when vision cameras are ineffective.
We evaluate it with 3000 millimeter-wave reflection samples of
pedestrian crossing traffic intersections and show that accurate
pedestrian detection is feasible with millimeter-wave devices.

Index Terms—Millimeter-Wave; Convolutional Neural Net-
work; Object Detection.

I. INTRODUCTION

Vehicle-pedestrian collisions are one of the leading causes
of fatalities worldwide. Pedestrian accidents frequently occur
as a result of poor visibility or adverse weather conditions
[1], making it challenging for drivers to spot pedestrians.
Traditional methods for reducing pedestrian accidents involve
a combination of measures, such as strict enforcement of
traffic laws, equipping vehicles with range sensors, and edu-
cating pedestrians. Despite these efforts, pedestrian collisions
remain a leading cause of traffic accidents. A solution to this
problem would be actively detecting pedestrians near traffic
intersections and providing this information to nearby vehicles,
allowing drivers to take appropriate action and avoid accidents.
Traffic enforcement cameras at intersections for monitoring
road activity has the potential to improve pedestrian safety
through object detection algorithms. However, this technology
fails to work in harsh weather conditions such as heavy rain,
snow, fog, hailstorms, etc. LiDAR-based systems, while more
effective in such situations, do not function for close objects
and require additional hardware such as mmWave for better
detection accuracy.

In contrast, mmWave devices can work effectively under
harsh weather conditions such as heavy rain, fog, snow, etc.,

and poor visibility because mmWave can penetrate through
a fog, and rains effect on mmWave signal strength is in-
significant for short range [2]. Additionally, the mmWave
device can capture fine-grained details of the target object with
the availability of broader bandwidth. However, pedestrian
detection with a mmWave device is challenging because most
reflections do not reach the receiver due to specularity [3].
Specularity happens because mmWave beamwidth is narrow,
and the orientation of reflected signals does not align with the
mmWave devices orientation, making essential properties of
the target object lost. Moreover, the weak reflectivity of the
target objects causes the reflected signals to be attenuated and
noisy, making it difficult to detect the object.

We propose MilliPED, a system based on Conditional Gen-
erative Adversarial Networks (cGAN), for identifying pedes-
trians in a traffic intersections. MilliPED uses dynamic and
static heatmaps of millimeter-wave reflections, which carry
the wireless signature of moving and stationary objects in
the field-of-view of the mmWave device, to detect and locate
both moving and stationary pedestrians accurately. MilliPED
achieves a median Intersection-over-Union (IoU) of 0.67 and
a 90th percentile IoU of 0.83, indicating the accurate detection
and localization of pedestrians.

II. MilliPED SYSTEM DESIGN

To detect and locate pedestrians, we formulate the problem
as a generation of mask image of the pedestrians in the
field-of-view rather than processing each pedestrian separately.
Mask image allows MilliPED to handle single and multi-
pedestrian cases and preserve the bounding box location
of all pedestrians. We generate mask image M(x, y) with
pedestrians from static and dynamic millimeter-wave heatmaps



[S(r, θ), D(r, θ)] (refer to Figure 1[e]), where M(x, y) is 1
when (x, y) is a pedestrian, and 0 otherwise.

Learning Architecture: In MilliPED, we use the generator
network (G) (referring to Figure 1[e]) to complete missing
regions of pedestrians that occur due to specular reflections,
with the help of the ground-truth mask image T (x, y); which
is calculated as M(x, y) = G[S(r, θ), D(r, θ)]. G consists of
convolution layers and skip-connection between layers to gain
and retain useful abstract features from static and dynamic
heatmaps and reconstruct the generated mask image, M(x, y),
with a series of deconvolutions [3]. On the other hand, the dis-
criminator network (D) leads the learning process of the gen-
erator network by distinguishing between the generated mask
image M(x, y) and the ground-truth mask image T (x, y). G
attempts to deceive D while D tries to correct G. After going
through several back-and-forth processes during training, G
eventually learns to produce a mask image, M(x, y), that D
believes is the ground-truth. Figure 1(f) displays the learning
framework for the cGAN network with the flow of input and
gradient.

Data Processing: We build a custom setup with a millimeter-
wave cascade device and zed stereo camera to acquire 10
data frames of reflection samples and ground-truth stereo
images per second, respectively (see Figure 1[a–d]). Next,
we calculate static and dynamic 2D heatmaps from reflection
samples with a series of Fourier transforms since it is easier to
learn pedestrian mask images from image-like inputs. Finally,
we apply object detection algorithm [4] on stereo images to
get ground-truth mask images T (x, y), where T (x, y) is 1 for
pedestrians and 0 otherwise.

Loss Function & Training: MilliPED’s cGAN uses a com-
bination of Mean Squared Error (MSE) and Binary Cross
Entropy (BCE) as the loss function to guide the direction of
the network and learning process. We calculate generator loss
LG as MSE[M(x, y), T (x, y)], and the discriminator loss LD

as BCE[Doutput, 1 or 0], respectively. Doutput is the boolean
output of D, and we use 1 for T (x, y) and 0 for M(x, y). To
train G, we accumulate both LG and LD, while D only uses
LD. We update network parameters with an Adam optimizer,
and the training continues until the model does not show any
improvement for 30 consecutive epochs, with a maximum
of 1200 epochs. Training the network with 15000 training
samples on an NVIDIA RTX A6000 GPU on the host server
requires around 24 hours.

III. PRELIMINARY RESULTS

Post-training, we use the trained G to generate mask images
for 3000 test samples collected from various traffic scenarios
during busy work hours, including pedestrians crossing the
road. Figure 2(a)[i–ii] demonstrates the successful generation
of mask images for pedestrians with one and two people in
view. We notice that bounding box locations with two people
are slightly off due to the close distance between them, making
it difficult for the millimeter-wave device to distinguish. We
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Fig. 2: (a) Generated mask images by MilliPED with for single
and double pedestrians. (b) CDF of Intersection-over-Union (IoU)
between ground-truth and generated mask images of pedestrians for
3000 test samples.

quantify MilliPED’s pedestrian detection and localization with
Intersection-over-Union (IoU) that provides overlap between
generated mask image M(x, y) and ground-truth mask image
T (x, y). Figure 2(b) shows the cumulative distribution of the
IoUs across all test samples and MilliPED achieve a median of
0.67 and a 90th percentile of 0.83, indicating accurate detection
and localization of pedestrians.

IV. CONCLUSION & FUTURE WORKS

In this work, we present and assess a platform for de-
tecting pedestrians in traffic intersections using millimeter-
wave devices. Our results indicate that pedestrian detection
at traffic intersections is possible and could help to reduce
the chance of collisions caused by unfavorable weather and
poor visibility. However, installing all these millimeter-wave
devices are labor-intensive and expensive. We anticipate that
picocells will be set up at the traffic intersections to enhance
existing network infrastructures [5], so it would be beneficial
to use picocells for network communication and pedestrian
detection by sensing the environment to detect the surrounding
objects when bandwidth is available, with limited interference
to the picocell’s communication duties. In the future, we plan
to improve pedestrian detection accuracy by collecting more
data, accounting for various scenarios, and developing the real-
time system to use millimeter-wave devices for communication
and pedestrian detection through context-aware deep learning
models.

ACKNOWLEDGMENTS

We sincerely thank the reviewers for their comments. This
work is partially supported by the NSF under grants CAREER-
2144505, CNS-1910853, and MRI-2018966.

REFERENCES

[1] Subasish Das, et al., “Factor association with multiple correspondence
analysis in vehicle–pedestrian crashes,” Transportation Research Record,
vol. 2519, no. 1, 2015.

[2] Yibo Zhu, et al., “Demystifying 60GHz Outdoor Picocells,” in Proceed-
ings of the 20th Annual International Conference on Mobile Computing
and Networking, 2014.

[3] H. Regmi, et al., “SquiggleMilli: Approximating SAR Imaging on Mobile
Millimeter-Wave Devices,” Proc. of ACM IMWUT, 2021.

[4] Yang, Guanhao, et al., “Face mask recognition system with YOLOV5
based on image recognition,” in 2020 IEEE 6th International Conference
on Computer and Communications (ICCC), 2020.

[5] Colin Blackman, et al., “5G Deployment: State of play in Europe, USA
and Asia,” Policy Commons, 2019.


