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Abstract—We propose Argosleep, a millimeter-wave (mmWave)
wireless sensors based sleep posture monitoring system that
predicts the 3D location of body joints of a person during
sleep. Argosleep leverages deep learning models and knowledge
of human anatomical features to solve challenges with low-
resolution, specularity, and aliasing in existing mmWave devices.
Argosleep builds the model by learning the relationship between
mmWave reflected signals and body postures from thousands
of existing samples. Since practical sleep also involves sudden
toss-turns, which could introduce errors in posture prediction,
Argosleep designs a state machine based on the reflected signals
to classify the sleeping states into rest or toss-turn, and predict the
posture only during the rest states. We evaluate Argosleep with
real data collected from COTS mmWave devices for 8 volunteers
of diverse ages, gender, and height performing different sleep
postures. We observe that Argosleep identifies the toss-turn events
accurately and predicts 3D location of body joints with accuracy
on par with the existing vision-based system, unlocking the
potential of mmWave systems for privacy-noninvasive at-home
healthcare applications.

Index Terms—Millimeter-Wave; Sleep Posture Monitoring;
HMM-Viterbi; Convolutional Neural Networks.

I. INTRODUCTION

Humans spend approximately one-third of their life sleep-
ing. High-quality sleep is of vital importance for the short-term
proper functioning of the human body and for long-term good
health [1]. A key metric to monitoring sleep is the spatial and
temporal understanding of sleep postures through the night,
as the postures directly influence sleep behavior and critical
parameters [2]. Each of us sleeps in one of the broad categories
of posture, such as supine, lateral, fetal, etc., and exhibits
wide variations of them throughout the night [3]. The effect
of different sleep postures has been studied widely to identify
their relationship to different health conditions [4]–[6].

Specific sleep postures could be fatal depending on the pre-
existing medical conditions. For example, supine posture is
linked with exacerbating obstructive sleep apnea by creating
unfavorable airway geometry, causing a reduction in lung
volume and limiting the movement of airway dilator muscles,
which could be life-threatening [7]. Infrequent turns due to
impairment in control of the motor activity of Parkinson’s
patients lead to parasomnia and restless leg syndrome [8].
Infrequent changes in sleep posture are also the primary cause
of pressure ulcers (i.e., bedsores) in post-surgical and elderly
patients. Additionally, physicians recommend different sleep
postures for different medical conditions: It is recommended to

sleep on side posture to reduce snoring, or left side to prevent
heartburn, or supine posture to lower back or shoulder pain,
or fetal posture during pregnancy, or some specific posture
variations during post-surgery recovery [9], [10]. These exam-
ples highlight the importance of a sleep posture monitoring
system that can provide real spatio-temporal observations,
which could help with corrections and prevent fatal accidents.

Since it requires time to train a patient to adapt to a new
sleep posture, physicians may need to frequently observe the
fine-grained posture, such as skeletal information, and its
changes throughout the night. Apart from error-prone qual-
itative assessment, where doctors ask patients (or their care-
taker/partner) about their sleep postures, in-clinic quantitative
assessment relies on visually observing the posture or inferring
them by analyzing physiological signals from devices attached
to a patient [11]. Existing at-home approaches are either
cumbersome, costlier, or highly privacy-invasive [12]–[15].
Further, their performance is hindered by dark bedroom con-
ditions and occlusion. Wireless-based solutions can overcome
these challenges by inferring postures under no light without
being privacy-invasive [16]–[18], but existing solutions rely on
special-purpose low-frequency devices. Besides, they can only
classify sleep postures into broad, discrete categories [19], and
are unable to provide fine-grained posture information, such
as the location of different body joints.

Fortunately, high-frequency millimeter-wave (mmWave)
wireless devices provide an effective alternative to the existing
systems to enable fine-grained posture monitoring: MmWave
signals can penetrate certain obstacles, work under zero visibil-
ity, and have higher-resolution than Wi-Fi. So, mmWave imag-
ing can facilitate “seeing” the body posture under dark con-
ditions and under the blanket. Besides, mmWave transceivers
are poised to soon become ubiquitous in all 5G-and-beyond
devices, such as access points, enabling the opportunity for
bringing privacy non-invasive sleep posture monitoring system
to the masses at-home. However, there exist two fundamental
challenges in mmWave imaging. First, mmWave signals could
be absorbed by many body parts or specularly reflect from
them in different directions away from the device, causing
most signals to never reach back to the receiver. So, the
output human shape could have a lot of missing parts from
which it is difficult to infer joint locations. Second, mmWave
devices have extremely low-resolution compared to vision-
based systems; so, many high-frequency components, such as



the contour and limbs, will be eliminated from the generated
images [20]. Moreover, the reflected signals carry additional
information about the bed and surrounding objects close to
the body, making it harder to separate the human shape. So, it
is challenging to extract body joint information and changes
directly from traditional mmWave imaging during sleep.

To overcome these challenges, we propose Argosleep, a
single-person sleep posture monitoring system that lever-
ages signal processing and deep learning models to en-
able fine-grained monitoring continuously and non-intrusively
with commodity mmWave devices. Instead of generating a
mmWave image from traditional algorithms and then predict-
ing the body joint locations, Argosleep directly predicts the
joint locations from the reflected mmWave signals by learning
the hidden association between them from thousands of data
samples. To learn such an association, Argosleep employs a
customized Deep Convolutional Neural Network (DCNN), that
predicts the 3D locations of several key body joints from
the reflected signals captured by multiple mmWave antennas.
Furthermore, to generalize the model for diverse populations,
Argosleep models a height classifier and uses the error in its
prediction to finetune the model. We use a dataset collected
from several static sleep postures from multiple volunteers, and
at run-time, Argosleep can predict 3D joint locations directly
from the mmWave signals. However, the reflected mmWave
signals could be corrupted by various factors, such as the
Doppler effect, under the toss-turn during sleep. Predicting the
body posture, with a model trained on static postures, during
such sudden movements not only is challenging but also is
less useful since toss-turns usually span for a short duration
of a few seconds. Therefore, Argosleep designs a toss-turn
detection module that can first classify the sleeping states to
either rest or toss-turn. Then, it predicts the joint locations
only during the rest state.

We prototype Argosleep with COTS devices by building a
customized setup with two 77–81 GHz mmWave transceivers
[21] to collect the reflected signals and a Microsoft Kinect
Xbox One [22] to collect the ground truth 3D joint locations.
Argosleep can detect all ground truth toss-turn events, and can
identify the start time and duration within 1.25 s and 1.7 s
of the ground truth, respectively, for all cases. For static sleep
postures with a base model, Argosleep predicts the 3D location
of body joints with a median error 1.3 cm only. Furthermore,
Argosleep generalizes well for diverse volunteers with median
and 90th percentile errors of 2.3 cm and 7.4 cm, respectively.

In summary, we make these two contributions: (1) We design
a customized deep learning framework for predicting the 3D
location of body joints during sleep from COTS mmWave
devices, which generalizes well for a diverse population. To
the best of our knowledge, Argosleep is the first system to infer
sleep postures in the form of 3D joint locations from the COTS
mmWave device, and achieve accuracy on par with the existing
vision-based systems. (2) We design a toss-turn detection
module that can accurately identify key sleep events and their
timing information from the mmWave reflected signals. To
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Figure 1: (a) A mmWave device captures reflected signals from the
target. (b) Example of reflected signals from two sleep postures.

accelerate the research on COTS mmWave device based sleep
monitoring, we will open-source our dataset and codebase.

II. BACKGROUND AND CHALLENGES

Traditional mmWave imaging approaches rely on Frequency
Modulated Continuous Waves (FMCW) from a device to
generate an image [23]. The device illuminates the target
scene with a wideband and wide-beamwidth FMCW signal
(Figure 1[a]). Each FMCW signal sweeps one of the mmWave
frequency bands linearly (e.g., 77 to 79 GHz, where 2 GHz is
the signal bandwidth), and receives the signals reflected back
from various objects in the surrounding, including the sleep-
ing human (see Figure 1[b]). Identifying the sleep postures
directly from the mmWave images, however, is challenging
for multiple reasons. First, existing commercial devices are
usually designed with a small number of antennas, such as
4 or 8, in the horizontal and vertical directions, [24]: So,
the generated mmWave images will have an extremely low-
resolution. While such images could be potentially fed into a
deep learning model to classify broad categories of postures,
it is hard to identify any body joint locations from them.
Second, future mmWave devices could possess a large number
of antennas, such as 1024, in both horizontal and vertical
directions [25], which could improve the fundamental image
resolution. However, all the antennas must be placed by strictly
following the Nyquist spatial criterion to generate alias-free
images. (Nyquist criterion states that the distance between
adjacent antenna elements should be ∼ c/(2f), where c is
the propagation speed, and f is the carrier frequency.) Adding
the reflected signals from non-uniformly spaced antennas will
create spurious reflection points, and the image will appear
distorted [26]. Finally, different body parts reflect mmWave
signals differently, such as torso could reflect a strong signal,
but the limbs usually reflect weak signals [20]. Such uneven
reflections from different parts, at a specific time instant, only a
subset of body parts is visible to the mmWave device, making
it challenging to identify the location of key body joints.

III. Argosleep DESIGN

A. Overview

Argosleep aims to bring a continuous, non-intrusive, and
non privacy-invasive sleep monitoring system at-home by
leveraging COTS mmWave devices. Recording an accurate 3D
locations of body joints throughout the night could enable nu-
merous applications, such as baseline monitoring of patients,
sleep diary to assist physicians, classification of sleep posture,



Figure 2: System overview of Argosleep.

track changes of body parts, toss and turn detection, detection
of sudden movement during the night, amount of time a person
is asleep or is awake or is restless, etc.

To this end, Argosleep designs two modules: A toss-turn
detector that classifies the sleeping period into two states,
rest or toss-turn, and a sleep posture predictor that predicts
the 3D location of body joints during the rest state. For the
toss-turn detection, Argosleep leverages the cross-correlation
between successive mmWave reflected signals and a Hidden
Markov Model (HMM) to label the sleeping period. For the
sleep posture prediction, instead of relying on traditional imag-
ing algorithms, Argosleep trains a customized deep learning
framework with thousands of examples of mmWave signal
reflections and ground truth 3D location of body joints to learn
a generalized relationship between them. Then, during the
run-time, Argosleep can accurately predict the joint locations
only from the mmWave reflected signals. Figure 2 shows the
system overview of Argosleep. We now describe these design
components in detail.

B. Data Synchronization and Resampling

Argosleep’s deep learning model relies on datasets collected
from different COTS devices. Therefore, it is critical to ensure
synchronization between them so that input-output data pairs
are aligned for training. To this end, we rely on software
synchronization and process data to remove any residual
misalignment. We collect the UTC timestamp from an NTP
timeserver before triggering the mmWave devices and the
RGB-D camera for data collection. Then, based on timing
information, we correlate the first received frame with all other
frames in mmWave devices, which identifies the first local
timestamp of movement and allow synchronization between
devices. Further, we calibrate data samples by offsetting the
samples w.r.t. the timestamps. Additionally, to compensate for
the sampling rate mismatch (the mmWave devices and RGB-
D camera in our setup have 25 and 30 fps sampling rates,
respectively), we resample the data in time using a weighted
averaging of adjacent samples. Finally, processed datasets are
fed into either toss-turn detector or rest network.

C. Toss-Turn Detection and State Machine

The core purpose of the toss-turn detector module is to iden-
tify sudden movements during sleep and classify the sleeping
period into two states: Rest or toss-turn. It is critical to identify

Figure 3: (a–b) STFT outputs from two monitored cases with 3 and
4 toss-turn events.
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Figure 4: Monitoring toss-turn events: The envelope detector output
from mmWave signals follows the changes in posture.

and separate the states as it not only helps in estimating the
time gap between two resting periods but also facilitates a deep
learning model to only predict the posture under rest states,
and avoid erroneous predictions under toss-turns.

1) Cross-Correlation based Toss-Turn Detection: Inspired
by the previous works on elderly fall detection using wire-
less signals [27], Argosleep leverages the observation that
in comparison to the rest states, toss-turn states are usually
associated with significantly higher spatio-temporal changes
in the received mmWave signals. To observe distinct toss-turn
states, we ask a volunteer to lie down on the bed placed at
2.5 m in front of the mmWave devices for ∼60 seconds and
perform multiple toss-turns, i.e., move from one posture to
another. We perform a Short-Time Fourier Transform (STFT)
over the signal received by one of the mmWave antennas.
Figures 3(a–b) show the STFT output for two cases, with 3 and
4 toss-turn events. In comparison to fall, the toss-turn during
sleep is usually a small-scale event, where the centroid of the
body might not change, and the limbs typically move between
adjacent distance bin of the reflected signals (Section II). So,
the changes observed under the toss-turn are much weaker
and do not show stark time-and-frequency changes. So, it will
require additional processing to amplify the changes during
the toss-turns and separate them from the rest states.

To amplify such changes, Argosleep applies a cross-
correlation between successive frames of the reflected sig-
nals, and estimates the rate of change (i.e., time-derivative)
in the peak correlation output. The key idea is intuitive:
Cross-correlation between successive frames allows uncover-
ing the similarity (or dissimilarity) between the consecutive
reflected signals. Since during the rest states, there are almost
no changes in the successive reflected signals, the cross-
correlation will show almost the same peak; so, its rate of
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Figure 5: (a) A two-states HMM. (b) Example detection of rest and
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change over time should be close to zero. On the other hand,
during the toss-turn states, such correlation peak fluctuates sig-
nificantly, with a variable rate of change. More importantly, the
time-derivative removes the almost constant reflections from
the static background, i.e., bed, furniture, nightstands, etc., so
that the only changes due to the body movement are amplified
and stand out. Let’s consider, Rt({d1, d2, . . . , dn}) as the
reflected signal at time t from distances di w.r.t. the receiver.
Mathematically, the cross-correlation, xCorr can be expressed
as xCorrt = max

m∈(0,n−1)
|
∑n−m

i=1 Rt(di+m) · R∗t-1(di)| and its

time-derivative, ∆xCorr as ∆xCorr t
t-1 = xCorrt − xCorrt-1,

where R∗t-1 is the complex conjugate of the received reflected
signal at time instant t-1. To reduce the number of oscilla-
tions between the false detections (+/-) and states, Argosleep
smoothens ∆xCorr over time with an envelope detector using
a Hilbert Transformation, similar to [28]. The envelope detec-
tor uses the Root-Mean-Square (RMS) of ∆xCorr amplitudes
over N consecutive frames. Intuitively, a large value of N
supresses many false detections but will have a slow reaction
to the true state change. On the other hand, a small value
of N will have a fast reaction but could lead to high false
detections and state oscillations. In practice, N = 25 frames,
i.e., 1 second of the consecutive reflected signals, for envelope
estimation, yields a good result, since human movements
during the sleep are on the order of several seconds.

Figure 4 shows another output of the envelope detector, and
compares the result with the Kinect based output. It also shows
a zoomed time period, where a volunteer in the left lateral
posture turns right and moves to the supine posture. However,
using the envelope output for state detection is challenging as
the output of the envelope detector is a real number between
0 to 1, where 0 indicates no change in the successive reflected
signals, and 1 indicates a very high change. But for posture
detection, Argosleep requires discrete binary states: Rest or
toss-turn. Further, due to sensitivity of mmWave signals to
minute changes in the environment, the envelope detector
can still show high output during the occasional hand or leg
movements, even if the full body has not turned yet. Also,
there could be early toss start and late toss end detection,
leading to the wrong estimation of the event duration: See
Figure 4, where the turn time duration estimated by mmWave
signals is much larger than the Kinect output.

2) Improving Detection with a Two-States HMM: To over-
come this challenge and improve the detection accuracy and
timing estimations, we design a lightweight two-states HMM
[29]. The HMM not only converts the envelope with real-
valued output between 0 to 1 to a discrete output of 0 and 1,
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Figure 6: (a) t-SNE plot for different postures from a single volunteer.
(b) t-SNE plot for different volunteers performing a same posture.

but also improves the state detection accuracy and reduces the
timing errors. Figure 5(a) shows the state transition diagram of
Argosleep’s HMM: The two states are rest and toss-turn, and
the emissions are different levels of envelope values. To build
the HMM, we collect several ground truth datasets involving
multiple volunteers tossing and turning during their sleep, and
formulate the state transition matrices by estimating the 4
conditional probabilities, i.e., p(Rest|Rest), p(Rest|Toss-Turn),
p(Toss-Turn|Rest), and p(Toss-Turn|Toss-Turn). We formulate
the emission matrix by estimating the conditional probabilities
for discrete envelope values (e), i.e., p(e < α1|Rest), p(e <
α2|Rest), . . ., p(e < α1|Toss-Turn), p(e < α2|Toss-Turn),
and so on. Finally, at run-time, Argosleep first calculates the
envelope from the reflected mmWave signals, and then uses the
state transition and emission matrices and a Viterbi decoder to
predict the binary states, corresponding to rest and toss-turn.
Figure 5(b) shows an example of ∼20 seconds of monitoring
with three toss-turn events and compares the prediction with
the ground truth Kinect based output. Clearly, in comparison
to the k-means with adaptive threshold, HMM can improve the
errors in event start and stop times. Once the entire sleeping
period is classified into either states, Argosleep aims to predict
the sleep posture during the rest state.

D. Deep Learning based Sleep Posture Prediction

Argosleep predicts sleep posture using a deep learning
model that relies on the relationship between the 3D location
of body joints and the mmWave reflected signals. The model
can learn such a relationship based on the feature variance
between distinct postures and individuals. To this end, we first
analyze the behavior of reflected signals and their relationship
with individuals’ sleep postures.

1) Relationship between Human Sleep Postures and Signal
Reflections: Intuitively, we can predict the 3D location of
joints for a specific posture only if the raw reflected signals
from various postures from the same human demonstrate
distinct behavior in feature space. Similarly, we can distin-
guish the 3D location of joints of individuals performing the
same posture only if raw reflected signals from a different
person (i.e., varying in height and gender) appear distinct in
feature space. To verify this intuition, we collect mmWave
reflected signals from our setup with the bed from a single
volunteer performing 6 different sleep postures. Then, we ask
6 volunteers (3 males and 3 females, height varying from 155
to 178 cm) to lie down on the bed in the same posture and
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collect signals reflected from their body. For each experiment,
we project the reflected signals in two-dimensional feature
space by measuring the t-SNE distribution; this distribution
represents the signals in such a way that the input with similar
features appears closer to each other.

Figure 6(a) and 6(b) shows the t-SNE distribution for a
single volunteer performing 6 different sleep postures on
the bed and for 6 volunteers performing the same posture,
respectively. Clearly, we observe 6 unique feature clusters
for both the cases: Such unique clusters indicate that the
input signal carries enough signature so that a learning model
should be able to effectively learn and distinguish them using
mmWave reflected signals.

2) Argosleep’s Rest Network: The core purpose of the Rest
Network is to predict the 3D location of body joints from the
mmWave signal reflections and capture diverse sleep postures
during the rest state. The Rest Network is designed using
a customized Deep Convolutional Neural Network (DCNN)
called Joint Regressor to map the relevant higher-dimensional
features in input to output. The Joint Regressor is trained with
two human-anatomy specific features. First, 3D location of
body joints of an individual is correlated with her height [30];
so, Argosleep could constrain and finetune the prediction for
joint locations by predicting the height and comparing the
difference with the known height of the user. Then, the model
can output better 3D joint locations by backpropagating the
height prediction error, and the network can be generalizable
for many users. Second, most of the human body joints are
spatially connected to each other in a parent-child, tree-like
hierarchy [31], and 3D pose of one joint is usually constrained
by its parent’s pose. So, the 3D location output of a child
should be conditioned on its parent joint to ensure the distance
between the parent and child is always fixed, across all
postures. We now describe the network components in detail.

I Rest Network Architecture: Figure 7 shows the Rest
Network architecture, with two major components: Joint Re-
gressor and Height Classifier, which we discuss next.

Joint Regressor: The objective of the Joint Regressor is to
capture the hidden relationship between mmWave reflections
and 3D joint locations to infer the complete posture by using
a customized DCNN as the Feature Extractor. A DCNN
maps relevant features in input to output by using filters
through a series of the convolution operation: It extracts

Table I: Joint Regressor network parameters for Argosleep. Cj :
jth Convolutional layer; Si: ith Stack in jth Convolutional layer;
FL: Flatten layer; FC: Fully Connected layer; Act. Fcn.: Activation
Function. LReLU: Leaky ReLU.

C1 C2 C3 C4 C5 FL FC1 FC2 Output
Stack S1,S2 S1,S2 S1,S2 S1,S2 S1,S2

Filter # 4 8 16 32 64 512 128 63 21x3
Filter Size 6x6 6x6 6x6 6x6 6x6
Dilation 2x2, 1x1 2x2, 1x1 2x2, 1x1 2x2, 1x1 2x2, 1x1
Act. Fcn. LReLU LReLU LReLU LReLU LReLU LReLU Linear

the spatial features relevant to the network by observing the
non-linear correlation between input-output pairs [32]. Joint
Regressor’s DCNN takes a 2D input and performs a series
of 2D convolutions in several layers to learn the relationship
between input and output. Joint Regressor is composed of
several layers to first learn the basic features, and as it gets
deeper, it learns deeper hidden features that map non-linear
relationship between input and output. For the purpose of
mapping signals to joint locations, we observe through a series
of finetuning processes that 5-layers of stacked convolution
with 2 convolution layers in each stack yield the best result
than a vanilla DCNN. Stacked representation provides depth
to the network so it can learn complex hidden representations
[33]. We also apply batch normalization after each stacked
layer to ensure normalization and prevent overfitting. The five
2D stacked convolutional layers are connected to a flatten layer
that converts the input to a 1D abstract feature of size 512, and
then, pass it through two fully connected layers of size 128
and 63, respectively, to finally give output as the 3D location
of 21 joints. Table I shows the detailed network parameters.

Height Classifier: The objective of the Height Classifier is to
assist the Joint Regressor in learning the association between
diverse postures of the same person. Since the skeleton of a
person typically depends upon her height [34], incorporating
height information can make the model generalizable to many
individuals with very little or no finetuning. A user could
input her ground truth height to the monitoring system, and
Argosleep can constrain the output from the Joint Regressor
by comparing the predicted height w.r.t. the ground truth,
and backpropagating the error to rectify the prediction of
joint locations. Instead of predicting the actual height, we
employ a classifier by quantizing human heights into discrete
values, and then predicting the class labels associated with
the quantization. The reason behind designing the model in
such a way is two fold. First, it is relatively easier to achieve



higher accuracy in predicting a class label than regressing
exact height when we work with small samples from a diverse
population. Second, since human heights are limited to a
certain deterministic range (e.g., in the US, the average height
ranges 163 to 179 cm [35]), it is well-suited to discretize them
into range bins, instead of regressing a real value of height,
where the network could suffer from out-of-range issues. To
learn the association between height and sleep postures to
mmWave signals, Height Classifier takes input from the flatten
layer in the Joint Regressor and uses a Multilayer Perceptron
(MLP) to output a height classification. MLP is a neural
network with one or more hidden layers of neurons that are
fully connected in each layer to learn the mapping between
input and output. MLP in the Height Classifier comprises
three hidden layers with 256, 128, and 64 neurons and an
output layer with the number of neurons equal to the number
of height classes. We apply ReLU activation in each layer
and a Softmax activation in the output layer, which outputs
probabilities associated with the labels, and we select the label
with the highest predicted probability.

I Total Loss Function: We train the Joint Regressor
and the Height Classifier jointly by designing a custom loss
function to ensure that the network converges to an optimal
value. For N number of total joints, the loss for the Joint
Regressor is a combination of the Euclidean distance loss,
LED =

√∑N
i=1(J i

real − J i
pred)2, between the predicted (J i

pred)
and ground truth (J i

real) for ith joint locations and the parent-
child distance loss, LJH =

∑N
i=1 |PCDi

real − PCDi
pred|, that

captures the joint hierarchy between predicted (PCDi
pred) and

ground truth (PCDi
real) distance of ith joint. The loss function

in the Height Classifier is a categorical cross-entropy loss,
LHC = −

∑K
i=1(yreal

i .log ypred
i ), between the ith predicted

(ypred
i ) and ground truth (yreal

i ) label of height for K number
of class labels, which provides a good quantitative measure in
distinguishing probability distributions of discrete categories.
The total loss can be expressed as LTotal = λ1 ·LED +λ2 ·LJH +
λ3 · LHC, where λ1 , λ2, and λ3 are the hyperparameters that
govern the contribution of each loss to the entire network, and
we will discuss their choice in Section IV.

IV. IMPLEMENTATION

Hardware Platform: We implement and evaluate Argosleep
by collecting real datasets from a customized hardware setup
we built. Our setup includes two mmWave transceivers oper-
ating at the 77–81 GHz unlicensed mmWave frequency bands,
TI IWR1443BOOST [21], that collect the mmWave reflected
signals in real-time at a frame rate of 25 fps, and one RGB-
D camera, Microsoft Kinect Xbox One [22], that collects the
ground truth depth images and 3D location of body joints at a
frame rate of 30 fps. We follow Section III-B to preprocess the
datasets. Figures 8(a–b) show our experimental setup similar
to at-home bedroom setting with a Queen-sized bed placed
at 2.5 m from the monitoring equipment. The setup has two
antenna arrays arranged in 3×4 and 4×3 configurations that
resolves reflection points in azimuth, depth, and elevation,

Figure 8: (a) Experimental setup with the devices and the bed, where
a volunteer is performing a sleep posture. (b) Hardware platform with
two 77-81 GHz mmWave devices and an RGB-D camera.
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Figure 9: 5 broad categories of sleep posture in Argosleep.

and with a bandwidth of 1.62 GHz, it achieves a depth
resolution of 9.25 cm. To process the received signals, we
apply traditional FMCW signal processing with the following
parameters: Ramp start frequency – 77 GHz; frequency slope
– 29.982 MHz/µS; baseband sampling rate – 1 Msps; number
of ADC samples – 256; chirp sweep duration – 60 µS; pulse
repetition rate – 1 kHz; and maximum antenna gain – 30
dB. We implement Argosleep offline on Matlab and Python
environments running on host PC and GPU servers.

Real Data Collection: We collect datasets from 8 volunteers
(age: 19-30 years, M/F percentage: 62.5/37.5, height range:
155-178 cm) performing several variations of the 5 sleep
postures on the bed (Figure 9). The background in our ex-
perimental setup consists of drywalls, like a bedroom, without
any clutters (except for the whiteboard on the right side).

For the toss-turn datasets, we ask a volunteer to lie down
on the bed and perform multiple toss-turns, i.e., move from
one posture to another, within 60 seconds. For static posture
datasets, a single experiment requires 60 seconds to complete,
where the first 7 seconds are spent on walking into the setup
and looking into the Kinect for about 5 seconds so that Kinect
starts detecting the joints. Then, the volunteer is required to
lie down in a posture till the end of the experiment. We only
consider those frames where the body joints are successfully
detected by the Kinect for our datasets.

For height classification, we quantize the height range into
18 equal-sized bins from 147 cm to 191 cm, and label them 1
to 18. We train the Height Classifier with these ground truth
labels, and finetune the Joint Regressor using the loss from
this classifier (Section III-D2). For heights beyond this range,
little finetuning can help the network to better understand the
relation. In total, we have nearly 40 K samples with a raw data
size of 16.7 GB of toss-turn events, and 27,382 static sleep
postures with a processed data size of 2.5 GB with 5 postures
from 8 volunteers of diverse ages, gender, and height.

Network Training: We train Argosleep’s Rest Network by
exploring different parameter settings to ensure convergence
to a near-optimal value. Argosleep’s Rest Network predicts



two outputs, 3D joint locations and height class, and trains
the network end-to-end with different loss functions for each
output. First, we set the training epochs as 2500, then monitor
the training process till the total loss function shows no
improvement for consecutive 30 epochs. Then, we explore
different optimizers, such as, Adam, Rmsprop, SGD, etc.,
and observe better convergence with Adam with a learning
rate of 2×10−4 and a batch size of 2. To ensure better
convergence and prevent overfitting, we split the training set
into training and validation sets in an 8:2 ratio. Argosleep’s
Rest Network includes three different losses, LED, LJH, and
LHC with the hyperparameters of λ1, λ2, and λ3, respectively.
We explore a different combination of hyperparameters for
loss functions, and found that the whole network performs
better with a combination of 0.5, 0.5, and 0.1 for λ1, λ2,
and λ3, respectively. This combination ensures that the Joint
Regressor in the Rest Network equally prioritizes the absolute
joint locations estimation and maintains the joint hierarchy,
and Height Classifier pays attention to height variation. The
Rest network is implemented in Python with TensorFlow 2.4
using Spyder IDE and Anaconda version 4.10.3 distribution.
Our training time varies between 6 to 10 hours for completion
in a GPU server with 2 NVIDIA RTX A6000 nodes.

V. Argosleep EVALUATION

Evaluation Summary: (1) Argosleep’s HMM-Viterbi de-
tects toss-turns with a median accuracy ∼85% and median
precision, recall, and F1-score of 0.97, 0.88, and 0.92, re-
spectively, indicating high accuracy and low false positives.
Argosleep always predicts the event duration within 1.7 s of
the ground truth, and can identify the start and end times
within 0.25 s and 0.73 s errors in median. (2) Argosleep’s
Rest Network predicts the 3D location of body joints of a
person’s various sleep postures with median and 90th percentile
errors of 1.3 cm and 6.24 cm, respectively. The network
generalizes well across multiple volunteers, with median and
90th percentile errors of 2.3 cm and 7.4 cm, respectively.

A. Toss-Turn Detection Results

I State Detection Performance: We first evaluate the
effectiveness of Argosleep’s toss-turn detection modules. Since
it is hard to control the number of toss-turns during the actual
sleep, and obtain a reasonably-sized dataset, we obtain 19,386
state observations from 30 datasets collected from a volunteer
who mimics the toss-turn events with posture changes within
a short period of 20 to 30 seconds to generate one dataset. We
generate the input-output pairs of mmWave reflected signals
and 3D location of body joints and also, corresponding Kinect
depth images to identify the ground truth rest or toss-turn
states. We find the ground truth toss-turn by applying a fixed
mask and calculating the pixel-to-pixel difference in successive
depth images and then, finding the energy in residual depth.
Then, we build the HMM from the Kinect ground truth, use
the reflected signals to estimate the envelope, and apply the
Viterbi decoder to it to predict the states.
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Figure 10: Rest and toss-turn detection accuracy: Effects of (a)
the number of antennas. (b) different RMS duration for envelope
estimation. The bar and errorbar represent the median and standard
deviation across 19,386 states.

Figure 10(a) shows the state detection accuracy w.r.t. the
Kinect-based ground truth, across different number of an-
tennas. We use the observation from multiple antennas and
take median votes to decide between the output binary states.
Clearly, Argosleep’s HMM-Viterbi performs consistently bet-
ter than the envelope thresholding algorithm, and the median
accuracy is always above 85%, reaching up to 100% in certain
cases. This is because the HMM-Viterbi can enforce the
envelope to follow the Kinect based toss-turn events with its
state and emission matrices. Moreover, the detection accuracy
is unaffected by the number of antennas since a single antenna,
with a large beamwidth, can cover the whole bed area. We also
use a variable number of frames, from 3 to 100, corresponding
to 0.12 to 4 s, to compute the RMS for the envelope detector,
and predict the states. Figure 10(b) shows that the large RMS
duration, such as 4 s, although useful for suppressing false
detections, decreases the state detection accuracy significantly,
since it reacts slowly to the true state changes. Still, Argosleep
performs consistently better with HMM-Viterbi, and RMS
duration of 1 s shows 88% detection accuracy on the median.
Figure 11(a) shows the distribution of precision, recall, and
F1-score of the event detection, where the median values are
0.97, 0.88, and 0.92, respectively, indicating Argosleep is not
only accurate but also has low false detection rates.
I Toss-Turn Timing Parameters: Next, we evaluate Ar-

gosleep’s performance in identifying the timing of the toss-turn
events. This information could be useful in not only identifying
the precise start and end of toss-turn but also annotating the
events automatically. To this end, we use the same set of state
observations as before and estimate the toss-turn times from
both Argosleep and ground truth. We evaluate three different
errors in timing parameters: Toss-turn start time, end time, and
duration. For the start and end times, we first locate each event
in the ground truth and identify the time of the state change
from 0 to 1 (i.e., rest to toss-turn) as start and 1 to 0 (i.e., toss-
turn to rest) as an end. For each case, we identify the closest
time of such events detected by Argosleep and estimate their
corresponding start and end times. For the duration error, we
find the sum of the absolute differences in start and end times
from the ground truth and Argosleep.

Figure 11(b) shows the distribution of error in duration
estimation across ∼100 toss-turn events, and compares the
performance with and without the HMM-Viterbi. First, our
total count for predicted toss-turn events shows that Argosleep
did not miss any detection. Second, without HMM-Viterbi,
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Figure 11: (a) Precision, recall, and F1-score for the state detection with HMM. (b) Distribution of errors in toss-turn duration estimation,
with and without HMM. (c) Distribution of errors in toss-turn start and end times detection with HMM.

we observe that the median and 90th percentile errors are
1.22 s and 2.04 s, respectively. In contrast, HMM-Viterbi can
reduce this error to 0.58 s and 1.34 s in median and 90th

percentile, respectively. More importantly, Argosleep always
predicts the duration within 1.7 s of the ground truth across
all our observed events. Figure 11(c) further shows the toss-
turn start and end time estimation errors with HMM-Viterbi.
Here, the median errors in start and end detections are 0.25 s
and 0.73 s, respectively. Moreover, the 90th percentile errors
show that Argosleep is accurate within 1 s and 1.5 s to detect
the start and end of the event, respectively.

B. Sleep Posture Prediction Results

I Error in Estimating 3D Location of Body Joints: We
now evaluate the performance of Argosleep’s Rest Network
in predicting the 3D location of body joints during sleep. For
a baseline performance, we first use a small-scale dataset of
∼9730 samples collected from three volunteers, (2 females
and 1 male, height varying from 155 cm to 178 cm) with the
lowest and highest height among all volunteers, performing 5
different sleep postures and their variations, and then evaluate
the performance across all 8 volunteers. After synchronizing
and resampling, we label the volunteers’ height into discrete
categories following Section IV. Then, we randomly select
∼8700 samples for training and ∼1030 samples for testing.
All our samples are evenly distributed across all postures.
During training, we use 20% of the training samples for
validation. The baseline results include the performance of the
Joint Regressor in terms of the Euclidean distance between the
ground truth and predicted joint locations.

Figure 12(a) shows the performance of Argosleep, where we
observe that for all 21 joints, median error is always less than
4.1 cm. However, we see a very high standard deviation across
joints 14, 15, 16, 19, and 20 (left knee, left ankle, left foot,
right ankle, and right foot). To investigate this issue further,
we plot the aggregated errors from all joints and separate
them in terms of the sleep postures. Figure 12(b) shows that
a majority of the errors are from the right fetal, i.e., a curled
up posture. The reason for such high error could be due to the
inability of the ground truth device to produce accurate joint
locations for curled up postures. But the joints that are critical
to facilitate a sleep posture monitoring application can be
predicted accurately by Argosleep. Figure 13 shows top-view
of skeletons for various sleep postures predicted by Argosleep.
These results demonstrate that Argosleep can predict the 3D
location of body joints accurately.

I Effect of Height Classifier: Argosleep uses the output
from the Height Classifier to finetune its Joint Regressor to
improve its generalization ability and refine the prediction. To
understand the benefit of the Height Classifier, we estimate
the absolute 3D joint location errors with and without using
it in the model. To this end, we first train the Rest Network
without the classifier on ∼6500 samples collected from three
volunteers, and test it on another set of ∼2000 samples.
Furthermore, we build the Height Classifier following Section
III-D2 into the network and feed its loss function to finetune
the output of the Joint Regressor. Then, we evaluate the
performance with the same set of training and testing samples.

Figure 12(c) shows the performance of the Rest Network
with and without the Height Classifier. We observe that
Argosleep predicts joint locations with median and 90th per-
centile errors of 6.22 cm and 12.12 cm, respectively, without
the Height Classifier. However, by incorporating the classifier,
we observe a better prediction with median and 90th percentile
errors of 1.3 cm and 6.24 cm, respectively. This is because
the network can better associate height information of an
individual with variations in sleep postures, which, in turn,
enable better joint location estimation from the reflections.
I Effect of Number of Volunteers: To evaluate the gener-

alizability of Argosleep’s Rest Network for diverse volunteers,
we now perform an ablation study. Here, we would like to
understand the performance and amount of finetuning required
for new, unseen volunteers for Argosleep. To this end, we
randomly select 2000 test samples from 8 volunteers, including
all 5 sleep postures, with 250 samples from each volunteer.
These are unseen data for Argosleep’s Rest Network. We then
create a training set of ∼3000 samples from one volunteer
and train Argosleep’s Rest Network: We consider it as a base
model. We then evaluate the performance on the test samples
that include data from all volunteers by calculating absolute
joint location error across all 21 joints and the absolute
error in height prediction. Then, we progressively add 2 new
volunteers’ datasets and finetune the base model, and test on
the same set of test samples for 8 volunteers.

Figure 14 shows the performance of Argosleep with differ-
ent levels of finetuning. With zero additional volunteers for
the base model, the network is unable to capture variations
in sleep posture and its relation to the height of varying
individuals. We see that the median joint location error is
very high, 11.6 cm, and the predicted body joints may not be
usable in practice. Similarly, the median error in the predicted
height of the unseen volunteers could be 10.2 cm, which
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Figure 12: (a) Argosleep’s prediction errors for 21 joints across 5 poses for 3 volunteers. (b) Argosleep’s prediction errors across all joints,
summarized for individual sleep postures. (c) Height Classifier improves the performance of Rest Network.
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Figure 13: Argosleep predicts the location of key body joints, similar
to vision-based systems, using mmWave signals.
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Figure 14: Argosleep generalizes across multiple volunteers with only
a little finetuning. (a) Joint and (b) Height errors.

is highly inaccurate. This is intuitive since the network has
learned from the dataset of only one volunteer, which results
in both body joint and absolute height errors. However, by
finetuning the network with 2 additional volunteers’ datasets
for 500 epochs, we see an improvement in prediction as
median errors for joint locations and height decrease to 7.5
cm and 5.08 cm, respectively. This is because Argosleep can
learn feature associations between individuals and their sleep
posture to capture the correlation between mmWave reflections
and human body shape. Such improvements are also consistent
in both the joint locations and height prediction, as we increase
the number of volunteers for finetuning.

In summary, Argosleep identifies the toss-turn events accu-
rately and predicts 3D location of body joints with accuracy
on par with the existing vision-based system.

VI. RELATED WORK

RF-based Sleep Posture Detection: Significant research ef-
forts have been directed to understanding and inferring sleep
posture using RF signals. [16] uses signals from Wi-Fi like de-
vice to identify the angular orientation of a person to determine
sleep posture. [17] also uses Wi-Fi to exploit the fine-grained
channel information to capture the minute movements caused
by breathing and heartbeats. [18], [36] adopt off-the-shelf
commodity Wi-Fi devices to monitor sleep, but they mainly
focus on predicting sleep stages and identifying breathing and

motion patterns rather than sleep postures. However, all these
works provide a coarse representation of the sleep and cannot
identify the key body joint locations due to the low-resolution
offered by Wi-Fi-like devices. MmWave signals in ubiquitous
commodity networking devices can enable such system by
representing the human body at a fine-grain scale as compared
to Wi-Fi. Yet, it is challenging to extract body joint information
directly from traditional mmWave imaging during sleep.

Millimeter-Wave based 3D Joint Estimation: In recent
years, researchers have been able to extract meaningful infor-
mation about humans using mmWave wireless signals from
commodity devices [37]–[39]. In particular, extracting skeletal
information has been the main focus as it provides visual
information about the 3D pose of a person [40]–[43] All
these existing works focus on human motion and have not
been adapted for sleep posture monitoring. Unlike in human
motion, where previous timestamp information can be utilized
to predict joint locations in the next frame, we cannot leverage
this fact fully in sleep posture monitoring. It is because during
sleep, a person is mostly in the rest states, and changes
in postures take place abruptly. Argosleep overcomes these
challenges by designing a toss-turn detector and a static sleep
posture predictor that detects a precise time of change in the
posture and then, predicts the postures during the rest states.

VII. CONCLUSION

We present Argosleep, a single person sleep posture moni-
toring system that detects the toss-turn events, and predicts the
3D location of body joints during sleep. Argosleep designs a
cross-correlation and HMM-Viterbi based event detector, and
a customized deep learning model based posture predictor
to overcome the challenges of poor resolution, specularity,
and aliasing problems in the COTS mmWave system. The
experimental results demonstrate that Argosleep generalizes
to multiple volunteers with little finetuning and works well
for different sleep postures. We plan to extend Argosleep to
monitor sleep postures for two persons, and collect datasets
for long durations to evaluate its end-to-end performance. We
believe Argosleep can unlock the potential of 5G mmWave
systems, such as home wireless routers, in enabling privacy-
noninvasive, high-quality at-home sleep monitoring systems.
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