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Figure 1: (a) Data collection setup with two mmWave transceivers and an RGB-D camera; (b) Illustrative example of an individual sleeping in
front of the mmWave device; (c) Reflected signals captured by multiple receive antennas in one frame; (d) Classification network architecture.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting; • Computing methodologies → Neural networks.
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ABSTRACT
We spend one-third of our lives sleeping, and sleep quality plays
an important role in our overall health. Sleep posture monitoring
can help medical professionals prevent negative health outcomes
associated with certain sleep postures. In this work, we propose
using millimeter-wave wireless signals to classify the sleep posture
using a supervised deep learning model and preliminarily evaluate
the performance for 7 volunteers and 5 broad classes of postures.

1 INTRODUCTION
Sleep is an incredibly important part of our daily lives, and it plays
a vital role in our health and well-being. Humans typically sleep in
one of the broad categories of posture, such as supine, prone, right
or left lateral, and right or left fetal. Certain sleep postures have
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been linked with negative health outcomes. For example, supine
posture has been shown to be linked with respiratory issues, such as
sleep paralysis and sleep apnea [1], which itself is a risk factor for
cardiovascular complications, including strokes and hypertension [2].
What’s more, individuals who subjectively categorize themselves as
“poor sleepers” spent significantly more time in the supine or prone
postures [3]. Automatically classifying and logging information
about sleep posture throughout the night can help provide insights
to medical professionals and individuals in improving sleep quality
and preventing negative health outcomes.

The current gold standard for studying sleep is Polysomnography
[4], but it requires very expensive hardware and is usually done in a
lab setting, making it impractical for at-home use. Doctors can also
ask patients, or their caretaker/partner, about their sleep postures, but
it is usually an error-prone qualitative assessment. A vision-based
system, using RGB-D or Infrared cameras, can allow a quantitative
assessment [5, 6], but these systems invade the user’s privacy, mostly
rely on lighting conditions, and do not work if the subject is occluded
behind blankets. Pressure mattresses [7] and wearable sensors [8]
are other popular techniques; however, these approaches require
additional hardware either on the bed or attached to the user’s body,
which may introduce sleep discomfort.

High-frequency millimeter-wave (mmWave) wireless signals pro-
vide a promising alternative for monitoring sleep postures. MmWave
is well-suited for human posture monitoring since it works under
low light conditions and occlusions, which are both likely scenarios
for sleep monitoring. Additionally, mmWave is poised to become
ubiquitous in next-generation wireless devices, such as home wire-
less routers, presenting an opportunity for wireless sensing to be
integrated into user’s networking devices without additional bulky
and expensive hardware. MmWave is also favorable for the comfort
and convenience of the user, as it does not require the user to have
any sensors on their body or bed. Prior approaches based on Wi-Fi
have been successful in classifying postures [9]; but mmWave oper-
ates at a higher frequency and ultra-wide bandwidth, so it will allow
better range resolution and finer-grained posture monitoring.
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In this work, we propose a sleep posture monitoring system using
only reflected mmWave signals received from commodity devices.
Our key intuition is that different sleep postures will introduce dis-
tinct signatures in the mmWave reflections, and thus, we can use
them directly for posture classification. At a high level, we use reflec-
tion signals captured by multiple receive antennas and design a deep
learning model that exploits the spatial and temporal characteristics
in the signal and classifies the sleep postures.

2 SYSTEM DESIGN
Since the reflection signals captured by a single antenna may not
contain enough spatial resolution to differentiate the postures, we
use multiple antennas along both the vertical and horizontal dimen-
sions of the device. The device can be mounted in any corner of
the bed room, like a regular wireless router. Since existing com-
mercial mmWave routers do not provide raw reflections, we built a
customized setup with two transceivers, each with 3 transmit and 4
receive antennas. The two transceivers are arranged with one phys-
ically rotated 90◦ w.r.t. the other. Such configuration enables us to
measure the signal reflections from 24 individual receive channels
in both azimuth and elevation planes. The devices collect reflections
by transmitting FMCW chirps starting at 77 GHz, and linearly in-
creasing frequency over a bandwidth of ≈1.6 GHz. We apply a Fast
Fourier Transform (FFT) to the received signal and obtain the reflec-
tion of objects at different ranges from the transceiver. Each frame
of mmWave reflections contains the signal phase and amplitude for
each discrete range bin, with a resolution of 9.25 cm, for each of
the 24 receiving channels. We further process the signal to remove
reflections corresponding to objects beyond the fixed, known range
of the bed. This amplifies the distinct posture signature and removes
reflections from background objects, like walls. Figures 1(a–b) show
the device and experimental setup. Figure 1(c) shows an example of
the signal amplitude received across different ranges. The strongest
reflection corresponds to the human body.

To classify the sleep posture, we design a customized Convo-
lutional Neural Network (CNN) with Long Short-Term Memory
(LSTM). We use a CNN based network design because CNNs have
been previously shown to be highly effective at extracting spatial
features from input data, and they are computationally less expensive
than the matrix multiplications associated with dense layers [10].
The LSTM layers serve the purpose of learning any temporal varia-
tions in posture type. Figure 1(d) shows the network architecture.

Several convolutional blocks consisting of a 2D convolution layer
followed by batch normalization and ReLU activation are used to
extract the spatial features and acquire a feature vector from each
input frame. Each convolution layer consists of 3×3 filters and has a
stride size of 1×1, with an increasing number of filters for the deeper
layers. In between sets of convolutional blocks, we apply a 2×2 max
pooling with strides of 2×2 and 1×1 to reduce the size. This feature
vector is then merged with the feature vectors of other frames from
the same sample, flattened and passed through 3 LSTM layers with
128, 64, and 32 hidden units, respectively, and passed through two
dense layers with sizes 20 and 5, where 5 corresponds to the number
of output classes. Finally, we apply the Softmax function, which
estimates the probability that the sequence of mmWave reflections

Table 1: Classification metrics for the model.

Number of frames Accuracy (%) MCC F1-score
10 73.45 0.61 0.69
50 66.38 0.55 0.64
100 58.04 0.55 0.64
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Figure 2: Bar graph showing the network’s classification accuracy
when trained on a different number of frames per network sample.

belongs to each of the possible postures. Our network then outputs
the posture with the highest predicted probability.

3 PRELIMINARY RESULTS
We collect an extensive dataset from 7 volunteers performing 5 dis-
tinct postures: Supine, left lateral, left fetal, right lateral, and right
fetal. Our dataset consists of 112,586 frames of mmWave reflection
signals. A co-located RGB-D camera captures ground truth depth
images and is used to label the collected dataset. We collect our data
for each volunteer over 11 trials of approximately 1500 frames per
trial. In each trial, one individual lies in the bed within the field-of-
view of the mmWave transceiver, and remains (almost) stationary
in one posture for the duration of the sample. We train our classi-
fication model and evaluate it with several metrics: Classification
accuracy, F1-score, and MCC. We also evaluate the performance
of our model when training and testing with different numbers of
sequential frames concatenated together. We use approximately 80%
of the data for training and the remaining 20% for testing. To prevent
overfitting in training, we partition the training and testing samples
according to the trials that each sequence of frames came from.

Table 1 shows some key classification metrics of our posture
recognition network when trained on a different number of frames
per sample. Additionally, Figure 2 shows a bar graph of the clas-
sification accuracy when using a different number of frames per
sample. We can see that the model performs the best when using
fewer frames per sample. We believe this is due to the fact that
with more frames per network sample, a lower number of training
samples are available and a higher number of frames are retained at
the LSTM layers, preventing optimal convergence of the network.

4 CONCLUSION AND FUTURE WORKS
In this work, we propose a wireless sleep posture monitoring system
using mmWave. We experimentally show the feasibility of using
this technology for multiple volunteers and sleep postures. In the
future, we hope to expand our dataset to include a more diverse set of
volunteers, and more types of sleep postures to provide finer-grained
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posture information to users over the course of a night. Also, in
practice, an individual will change postures many times over the
course of a night. So, we plan to explore methods to detect such
events using the mmWave signal reflections. We believe such an
automated system can enable high-quality at-home sleep monitoring
with ubiquitous millimeter-wave devices.
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