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Point Cloud Data (PCD) and Its Applications

» Perception of surrounding 3D environments enables many
ubiquitous sensing applications

» Point Cloud Data (PCD) is an efficient and popular data
structure for machine representation of 3D environments

Augmented/Extended Reality Mobile Robot Indoor SLAM Surface and Floor Mapping



Point Cloud Data (PCD) and Its Applications

» Perception of surrounding 3D environments enables many
ubiquitous sensing applications

» Point Cloud Data (PCD) is an efficient and popular data
structure for machine representation of 3D environments

Structure Color

§ {X,Y, Z,R, G, B}
{X1, Y1, Z1, Ry, Gy, B1}

{Xn, Yn, Zn, Rn, Gn, Bn}



Constructing a PCD and Its Challenges

« RGB-D and/or LIDAR sensors are used to construct PCD

» Two key challenges
—It requires a lot of time and effort for large-scale environments
—It requires precise planning of the scan trajectories

Missing structures and colors



Existing Approaches for Constructing High-Quality PCD

Hardware-based

Long-range and large field-of-view

camera and depth sensors

Limited by low visibility
and sensor occlusion

Expensive and consumes
a lot of power

Software-based
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Geometrical and machine-
learning models to infer shapes

Works on small PCD and
mostly single objects

Reconstructs only shapes,
not colors




Challenges in Constructing Indoor PCD

 Structure and color reconstructions

Hard to extract features from a large scene with different objects
and preserve local and global structures




Our Proposal: DeepPCD
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Our Proposal: DeepPCD
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Structure Reconstruction: Key ldeas

€ )

A large PCD can be split
Into multiple small patches
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We can reconstruct the patches

and merge them iteratively
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Challenge: How many patches and where to split them?




Structure Reconstruction: Key ldeas
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We could approximate many
points as 3D planes

< 4

Indoor PCD consists of
geometric structures, e.g.,
straight walls, floors

Challenge: How to automatically find those planes?




Structure Reconstruction Overview

Global Reconstruction

Feature Extraction
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Local Features with
Graph Convolution

! !

Global Features with Patch and Global
o —l .
Vision Transformer Reconstruction

—_— Plane Point Generator

Structurally
complete PCD

Input PCD T




Structure Reconstruction Networks
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Structure Reconstruction Networks
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Structure Reconstruction Networks
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Structure Reconstruction Networks
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Our Proposal: DeepPCD

Structure l Color
Reconstruction Reconstruction

DeepPCD
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Color Reconstruction: Key ldea
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We could infer the missing
colors from similar objects

< 4

Many large objects from
similar environments will
likely share similar colors

Challenge: How to find those objects and generalize?




olor Reconstruction Overview

Color Inference

Conditional Feature
Extraction

>

cGAN based Color
Input PCD Assignment

Structurally
complete PCD

Fully reconstructed PCD



Color Reconstruction Networks
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Color Reconstruction Networks

’ I I I I B B . -\

Ground truth PCD ¢ Incomplete PCD \

Generator > ]

PointNet++ |
Feature — I

Extractor Conditional Feature |

© 1l

%gl

] |

o 5 1

3ol

© o

]

¥ 4

—--------’

Reconstructed PCD

(without color) Reconstructed PCD

(predicted color)

5 g
g g2 8 s P T e s res o Condiional N
3 - 15 £ Feature ) 1
8 = g 8 768 512 PointNet++
[&] o o
. T -« Feature |
PointNet++ Feature Extractor | 2 2w Extractor
> I 812 I
| MLP i
=]
. ; [ = I
; > | e |
& 3 ‘ |Sigmoid '
Encoder and Decoder Discriminator Soore V4




DeepPCD Summary

» DeepPCD is a two-step deep learning based

Point Cloud Data (PCD) reconstruction framework
—It automatically completes an indoor PCD by
reconstructing its structure and inferring missing colors
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Data Collection and Implementation

- To train and test DeepPCD, we use two large-scale datasets

 Dataset 1: From an AR-capable smartphone, ASUS ZenFone AR
—PCD from 25 large, diverse indoor environments, across 3 buildings
—General-purpose hallways, office spaces, lobby area, etc.
—Each ground truth PCD contains more 3 million points

- Dataset 2: From Stanford Large-Scale 3D Indoor Spaces (S3DIS)!

* In total, we have ~3,000 PCD (total ~45 GB)
— 1,200 samples for training and rest of ~1,800 for testing DeepPCD
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Qualitative Results: Structure
Input PCD Ground truth DeepPCD
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Qualitative Results: Structure
Input PCD Ground truth DeepPCD




Quantitative Results: Structure

« Chamfer Distance (ChD) measured as the average squared L2-
norm distance among two PCD
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Quantitative Results: Structure

« Chamfer Distance (ChD) measured as the average squared L2-
norm distance among two PCD
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Quantitative Results: Structure

« Chamfer Distance (ChD) measured as the average squared L2-
norm distance among two PCD
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Quantitative Results: Structure

« Chamfer Distance (ChD) measured as the average squared L2-
norm distance among two PCD
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DeepPCD improves PCD structure quality

by 1.5x — 3.9x from existing methods



Qualitative Results: Color
Input PCD Ground truth DeepPCD




Quantitative Results: Color

« Structural Similarity Index Measure (SSIM): Average color similarity
between two PCD by projecting 3D points into 3 isometric planes
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Quantitative Results: Color

« Structural Similarity Index Measure (SSIM): Average color similarity
between two PCD by projecting 3D points into 3 isometric planes
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Quantitative Results: Color

« Structural Similarity Index Measure (SSIM): Average color similarity
between two PCD by projecting 3D points into 3 isometric planes
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DeepPCD consistently improves PCD color quality
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Application Results: Device Navigation

- Performance of vision-based device self-navigation
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Application Results: Device Navigation

-o— Incomplete

__’“'-'—'-'—
—— DeepPCD o
8 - = Ground truth . |
| 3
o ®
6 — o9
J— v‘fﬂ%? ¥ -
5 ‘
é 4 : ‘I
=l I |, .
P v’I Incomplete =
“i _ DeepPCD = 1
o G Y A . Ground truth ==
§ <] | l I 'I O | | | | | | |
. 2 i 3 . 1 O 05 1 15 2 25 3 35 4
X (m)

Tracking Error (m)

35



Application Results: Object Tagging

- Manually tagged ~200 objects across all PCD
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Application Results: Object Tagging

- Manually tagged ~200 objects across all PCD
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# DeepPCD output improves applications’ performance in

localization, navigation, and object tagging
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Conclusion 2022UBICOMP

« DeepPCD is a deep learning based system to reconstruct the missing
structure and color information of indoor PCD

* |ts performance results show consistent improvement over existing
methods, both in quality and quantity, for two large-scale datasets

» Its output further improves the performance of many vision-based
ubiquitous sensing applications

Thank you!

Check out our project website for more results, code, and dataset

Contact:
sur@cse.sc.edu
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