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Our Approach

B Can we deploy picocells at D-band more effectively?
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D-Band Deployment & Challenges

B NextG wireless networks are difficult to design and deploy

e Millimeter-wave at D-Band (110 GHz to 170 GHz) offers wider bandwidth and e Empirical analysis across diverse environments show that visually similar

can increase the capacity of existing networks. 0 objects produce similar millimeter-wave Signal Reflection Profiles (SRPs).
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* Large number of picocells are needed to support c“éﬁi o i e Similarity between visual images and SRPs show the non-linear relationship,
high throughput demand of clients. 2 0s BlaEgal: making it difficult to model their relationship (scatter plot of Block 1).
e Deploying picocells that are operating at D-band %82 e Deep learning-based models can accurately learn the mapping between non-
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frequency has three major challenges. 5, | linear data with limited number of environmental observations.
& * A co-located mmWave and AR devices can quickly collect visual images and
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B Challenges with picocell deployment at D-band _ 405
Visual Similarity (SSIM)

SRPs at random locations to train deep learning model and predict more SRPs.
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* Ray-tracing simulation based picocell deployment are inaccurate due to lack
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* Accurate and thorough manual site surveys might help for picocell SR : R e S.110 rStrong Reﬂ

deployment, but they are time-consumingandcostly. @~ |EEESE | . 2 B 1o |\ N
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deployment and may require to update deployment locations.
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Point Cloud Data (PCD) ® SRP measurement
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Preliminary Results & Future Goals

System Design

B DCNN model accurately predicts SRPs across diverse environments

B Deep Convolutional Neural Network (DCNN) accurately predict SRPs

* Preprocess visual Point Cloud Data (PCD) to obtain Inverse Depth Image for o
MobileNetV2 network.

Deep learning model doesn’t require extensive manual site surveys by
accurately predicting SRPs at unobserved locations.

* Depthwise and Pointwise convolution layers of MobileNetV2 extracts high-  Model predicts SRP at D-band with & , .
level abstract features from Inverse Depth Image. an average 3.5 dB median error. =12 24 GHz =3 122 GHz ==
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* Fully connected layers use abstract features and mmWave transceiver pose B Ongoing Work g | - —
to accurately predict SRPs at the output layer. : . 5
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Perform “what-if” analysis of picocell deployment.
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A = Distance of the Signal Reflectors (m) Explore 122 GHz and 24 GHz joint picocell .de.ployment and simulate
[ mmWave R IMObi eNetV2 Convolution Layers . FC Layers mmWave reconfigurable intelligent surfaces to maximize coverage.
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