
High-Confidence Computing 2 (2022) 100072

Contents lists available at ScienceDirect

High-Confidence Computing

homepage: www.elsevier.com/locate/hcc

Order of FIB updates seldom matters: Fast reroute and fast convergence

with interface ‐specific forwarding

☆

Phani Krishna Penumarthi a , Aaron Pecora

b , Sanjib Sur c , Jason M. O’Kane

c , Srihari Nelakuditi c , ∗

a Gigamon, Santa Clara, CA, USA
b US Army, Tampa, FL, USA
c Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA

a r t i c l e i n f o

Keywords:

Packet loss

Failure resilience

Fast reroute

Transient forwarding loops

Convergence delay

IP networks

a b s t r a c t

During convergence, after a link state change in traditional networks with a distributed control plane, packets

may get caught in transient forwarding loops. Such loops can be avoided by imposing a certain order among the

routers in updating their forwarding information bases (FIBs), but it requires some form of coordination among

routers. As an alternative, a progressive link metric increment method has been proposed for loop-free forwarding

without ordered FIB updates, but it takes longer to converge to the target state. In this paper, we show that the

order of updates rarely matters for loop-free convergence when the failure inference-based fast reroute (FIFR)

scheme with interface-specific forwarding is employed for dealing with link failures. The key insight is to have

each router install the traditional interface-independent forwarding entries as soon as they are recomputed during

convergence and install the recomputed interface-specific backwarding entries post-convergence. Our evaluation

of 280 real and random topologies confirms that the order of updates does not matter with the proposed approach

for 17336 out of 17339 links in those topologies. To handle such rare cases where the order matters, it can be

coupled with progressive link metric increments to ensure loop-freedom with unordered FIB updates. Thus, the

proposed approach, referred to as FIFR++, makes it possible to achieve disruption-free fast convergence and fast

reroute without requiring any modification to the IP datagram and without needing any coordination between

routers.

1

i

i

t

n

p

O

c

t

p

w

l

n

s

c

t

C

r

v

l

a

t

t

t

s

f

n

t

o

r

t

p

n

d

h

R

2

(

. Introduction

The key objectives of an intra-domain routing protocol such as OSPF

n a traditional network with a distributed control plane are reachabil-

ty , i.e., forward packets to their destinations, and optimality , i.e., along

he shortest paths. To ensure optimality, any changes in the link state

eed to be propagated across the network, so that all routers recom-

ute new shortest paths and install corresponding forwarding entries.

n the other hand, to respond to failures quickly, due to relatively long

onvergence delay associated with a link state update, optimality is of-

en traded-off for reachability, by having routers adjacent to failures

erform local rerouting, without invoking the control plane. However,

hen a failure lasts beyond a certain duration, it is desirable to trigger a

ink state update so that all routers recompute the optimal routes in the

ew topology. But a straightforward link state update can cause tran-

ient forwarding loops during the convergence process unless routers

oordinate to install their forwarding entries in a particular order. In

his paper, we study the feasibility of developing a combination of local
☆ This is a revised and extended version of the paper presented at the 27th Intern

hina [1] .
∗ Corresponding author.

E-mail address: SRIHARI@sc.edu (S. Nelakuditi) .

ttps://doi.org/10.1016/j.hcc.2022.100072

eceived 22 September 2021; Received in revised form 29 May 2022; Accepted 12 J

667-2952/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Shandong

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
eroute and global update mechanisms that can achieve loop-free con-

ergence, while performing disruption-free forwarding around a failed

ink, without carrying any additional information in the IP datagram

nd without requiring any signaling between routers.

There have been many proposals for performing fast reroute in tradi-

ional IP networks with a distributed control plane [2,3,11–14] . Many of

hese schemes require encapsulation [3] or modification to the IP header

o carry additional bits of information [12] . Among all the IP fast reroute

chemes that provide full protection against any single non-partitioning

ailure, we consider failure inference based fast route (FIFR) [5] , as it does

ot need any changes to the IP datagram. Under FIFR, routers adjacent

o a failed link or router perform local rerouting around the failure, with-

ut notifying non-adjacent routers about the failure. The non-adjacent

outers utilize backwarding entries, which are associated with each in-

erface along the reverse shortest path and are precomputed based on

otential inferred failures that could cause a packet for a given desti-

ation to arrive at that interface, to ensure loop-free forwarding to the

estination. While FIFR is suitable for short-lived failures, forwarding
ational Conference on Computer Communications and Networks, Hangzhou,

une 2022

 University. This is an open access article under the CC BY-NC-ND license

https://doi.org/10.1016/j.hcc.2022.100072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hcc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hcc.2022.100072&domain=pdf
mailto:SRIHARI@sc.edu
https://doi.org/10.1016/j.hcc.2022.100072
http://creativecommons.org/licenses/by-nc-nd/4.0/

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

p

l

u

d

p

a

i

t

t

r

r

o

o

i

h

w

r

t

b

r

c

c

i

h

i

c

o

s

v

o

r

s

r

o

a

r

t

i

e

e

i

t

o

i

2

a

v

a

A

g

c

[

d

o

T

t

c

c

n

R

f

B

t

t

T

u

t

p

a

e

v

c

e

h

l

[

fi

t
ackets to the point of failure and then rerouting them is undesirable for

onger-lasting failures. In such cases, it is preferable to trigger a link state

pdate and initiate a network-wide re-convergence to optimal routes.

During the convergence period, i.e., between the time a link state up-

ate is initiated and the time all routers install new forwarding entries,

ackets may be forwarded by some routers based on the new topology

nd others based on the old topology, potentially leading to forward-

ng loops. To prevent loops, [7] proposed a scheme that imposes a cer-

ain order between the FIB updates of different routers. While it guaran-

ees loop-free convergence, it requires some form of coordination among

outers to order their updates. As an alternative, a progressive link met-

ic increment method has been proposed [8] , which sends a sequence

f updates such that each update is loop-free, regardless of the order

f updates. But the downside of this incremental update method is that

t takes longer to converge to the target state. This paper focusses on

ow we can achieve the twin goals of fast convergence and fast reroute,

ithout causing loops and requiring changes to the IP datagram.

We observe that a straightforward combination of FIFR for fast

eroute and traditional link state updates for fast convergence mitigates

he problem of forwarding loops, with the help of backwarding entries,

ut can not completely eliminate them. Perhaps more surprisingly, even

eplacing traditional link state updates with progressive link metric in-

rements in conjunction with FIFR as is does not guarantee loop-free

onvergence. However, with the combination of FIFR and progressive

ncrements, convergence can be made loop-free and order-agnostic by

aving each router install interface-independent forwarding entries dur-

ng convergence and interface-specific backwarding entries after the

onvergence. Moreover, we find that FIFR with the deferred installation

f interface-specific backwarding entries by itself, even without progres-

ive increments, avoids loops, except in rare cases. Our evaluation re-

eals that the order of FIB updates among routers matters only for 3 out

f 17339 links in 280 real and random topologies [15] . Only in those

are cases, we propose to employ the progressive increment method and

how that the resulting link metric sequence length is short, 4 or less. We

efer to this combined approach of FIFR with the deferred installation

f backwarding entries and progressive increments only when necessary

s FIFR++.

The rest of the paper is organized as follows. Section 2 reviews the

elated work that motivated the design of FIFR++. Section 3 describes

he operation of FIFR approach and illustrates the looping problem dur-

ng convergence. Section 4 presents the proposed FIFR++ approach of

mploying FIFR in conjunction with deferred updating of backwarding

ntries and progressive link metric increments, and proves that FIFR++
Table 1

Comparison of schemes that affect forwarding upon a link failure before trigger

FIFR with deferred installation of backwarding entries and progressive metric in

is not relevant are marked with “ – ”. The desirable features are colored green

features.

Before triggering convergence Requires changes

to IP datagram?
Scheme Loop-free? Loss-free?

LFA [2]

NotVia [3]

FCP [4]

FIFR [5]

OSPF – –

LISF [6] – –

oFIB [7] – –

Metric Increments [8] – –

SafeGuard [9]

FCFR [10]

FIFR + OSPF

FIFR + Metric Increments

FIFR + Deferred Backhops

FIFR ++

2
s loop-free while protecting against single link failures. Section 5 reports

he results of the performance evaluation of FIFR++. The limitations

f this work are discussed in Section 6 . Finally, we conclude the paper

n Section 7 .

. Related work

There have been numerous proposals for accelerating convergence,

voiding loops, and continuing forwarding despite failures. [11] pro-

ides a strong motivation for the need for fast recovery in the data plane

nd presents a comprehensive survey of packet recovery mechanisms.

ccording to [11] , FIFR, earlier referred to as FIR, is a remarkably ele-

ant, simple, and fully distributed method that provides full failure case

overage. It is worth noting that one of the open problems mentioned in

11] is how to reliably avoid intermittent micro-loops without slowing

own re-convergence, which is the focus of this paper. We discuss some

f the most relevant works here and contrast them with FIFR++ (see

able 1).

One of the earliest IP fast reroute schemes proposed is Loop-Free Al-

ernates (LFA) [2] , which tries to find alternate next-hops that do not

ause loops. LFA does not require any changes to the IP datagram and

an be effective depending on the network topology [14] . But it can

ot guarantee protection against even a single link failure. Csikor and

étvári [16] shows that remote LFA (rLFA) approach can attain 100%

ailure case coverage in most networks with the addition of a few links.

raun and Menth [17] also suggests adding links to ensure full protec-

ion with LFAs and proposes a method for loop detection using addi-

ional failure information in the packet header to drop looping packets.

he NotVia approach [3] locally reroutes a packet around a known fail-

re by encapsulating the packet to an address that implicitly identifies

he failed network component to be avoided. While NotVia provides full

rotection against a single failure, it incurs tunneling overhead, and the

dditional header can cause fragmentation and reassembly at the tunnel

ndpoint [14] .

Failure carrying packets (FCP) [4] does away with the need for con-

ergence by carrying the list of failed links in the packet. Packet Re-

ycling [18] can deal with more than one failure by rerouting pack-

ts leveraging cellular graph embeddings using additional bits in the

eader. Safeguard [9] aims to provide both fast route and transient

oop prevention by carrying the remaining path length in all packets.

19] performs predictive fast reroute by inferencing the affected pre-

xes due to an outage and rerouting according to a two-stage forwarding

able for tagging packets and forwarding based on tags instead of pre-
ing convergence and during convergence. FIFR++ is the combination of

crements only when necessary. The schemes for which the specific feature

 and the others red. FIFR++ is the only scheme with all the desirable

During convergence Requires coordination

between routers?

Speed of

convergence
Loop-free? Loss-free?

– – – –

– – – –

– – – –

– – – –

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

fi

i

L

t

a

l

w

p

t

I

w

w

w

f

r

i

o

q

L

t

t

a

l

w

e

f

p

h

c

b

c

p

a

f

t

i

T

t

w

o

a

f

r

s

k

t

3

g

t

d

d

f

F

3

t

F

Fig. 1. A topology used for the illustration of fast reroute and convergence.

r

I

t

A

t

d

p

t

l

p

h

t

t

t

p

k

l

i

w

l

d

k

i

h

u

c

a

c

Table 2

Key Links and back hops for unusual incoming

interfaces for the topology in Fig. 1 .

Interface Destination Key link Back hop

B →A E B - E C

B →A F E - F D

A →B C A - C E

A →B D A - D E

E →B C C - E A

E →B F E - F A

A →C B A - B E

E →C B B - E A

F →D E E - F A

B →E A A - B C

F →E D D - F B
xes. Liu et al. [20] proposes the idea of data-driven basic connectivity

n the data plane and optimal path computation in the control plane.

ike FIFR, Liu et al. [20] also performs forwarding based on the des-

ination address and incoming port of an arriving packet, but needs an

dditional bit in the packet header or two virtual links per each physical

ink. Compared with such schemes, FIFR++ provides failure resilience

ithout any additional information in the packet header.

Software defined networking (SDN), with a centralized control

lane, has been gaining in popularity [21] . Yet, there have been at-

empts to combine the advantages of SDN and traditional routing.

n [22] , Vissicchio et al. propose a hybrid approach called Fibbing,

hich introduces fake nodes in the network to induce the desired for-

arding tables. Since link failures will necessitate changes in the for-

arding plane and fake nodes, we believe approaches like FIFR++

or providing failure protection and loop-free convergence are still

elevant.

As mentioned earlier, a scheme called oFIB [7] prevents loops dur-

ng convergence by imposing a certain order between the FIB updates

f different routers. While it guarantees loop-free convergence, it re-

uires some form of coordination among routers to order their updates.

itkowski et al. [23] proposes a simpler implementation of oFIB by in-

roducing a delay between the convergence of the node adjacent to the

opology change and the network-wide convergence, but it can only

void local transient forwarding loops. Along the lines of progressive

ink metric updates [8] mentioned earlier for loop-free convergence

ithout any coordination between routers, Clad et al. [24] and Clad

t al. [25] provide efficient algorithms for determining metric sequences

or shutting down a link or a router. They are, however, meant for

lanned maintenance, and their convergence is slow. FIFR++ aims to

andle both planned and unplanned failures.

It has been observed [26] that routing loops cause significant in-

rease in overall traffic and are one of the causes of routing insta-

ility. An approach for mitigating transient forwarding loops during

onvergence using interface-specific forwarding, called LISF, was pro-

osed in [6] . But this method prevents loops by discarding packets that

rrive through unusual interfaces. In contrast, FIFR++ ensures loop-

ree convergence without any packet loss. The scheme most related to

his work [10] , called FCFR, uses the combination of NotVia [3] and

nterface-specific forwarding for loop-free convergence and fast reroute.

he relative merit of FIFR++, unlike NotVia which relies on encapsula-

ion, is that it provides the same service without any overhead associated

ith tunneling.

Overall, FIFR++ has 4 key features that make it attractive against

ther competing schemes. 1) It guarantees loop-free fast rerouting

round a failure to any reachable destination. 2) It provides loop-free

ast convergence to optimal forwarding after a failure. 3) It does not

equire any changes to the IP datagram. 4) It necessitates no additional

ignaling among routers for installing FIB updates. To the best of our

nowledge, FIFR++ is the only scheme with all these desirable fea-

ures.

. The problem of convergence with FIFR

In this section, we illustrate the challenges in achieving fast conver-

ence while ensuring loop-free forwarding with FIFR. First, we describe

he operation of FIFR. Then, we discuss the interaction of FIFR with tra-

itional link state updates and show that forwarding loops can occur

uring convergence. Finally, we point out that convergence is not loop-

ree, even when progressive updates are employed in conjunction with

IFR.

.1. Failure inference based fast reroute

We now explain the core idea behind the FIFR approach, and refer

he reader to [5,13] for full details. Consider the topology shown in

ig. 1 , where each link is labeled with its cost. Suppose the link between
3
outers B and E is down, and only B and E are aware of the failure.

magine forwarding a packet from source A to destination F. Based on

he link costs, the shortest path from A to F is A →B →E →F. So, router

 will forward the packet to its next hop B. Router B, being adjacent to

he failed link B - E, initiates local rerouting. Since the shortest path to

estination F, without the B - E link, is B →A →C →E →F, it forwards the

acket back to A. Normally, this would cause the packet destined for F

o go back and forth between routers A and B, resulting in a forwarding

oop.

Under FIFR, however, A infers potential failures along the shortest

ath to F that would cause the packet to arrive at A from its usual next

op B (i.e., through the unusual incoming interface B →A). It is apparent

hat the failure of link B - E would cause the packet for F to arrive

hrough interface B →A. Similarly, the failure of E - F would also cause

he packet destined for F to arrive through interface B →A, as the shortest

ath from E to F without link E - F is E →B →A →D →F. Since A does not

now which of these links actually failed, it excludes all such candidate

inks to find an alternate next hop (which we refer to as back hop), which

s D, for packets destined for F arriving through interface B →A.

We observe that the resulting back hop would be the same, if we

ere to exclude just one of those candidates links, referred to as the key

ink , that is closest to the destination. In this example, the key link for

estination F and interface B →A is E - F. Router A can precompute a

ey link per destination for each of its interfaces (which may be none

f there are no candidate links), and compute the corresponding back

ops. Table 2 lists the key links and back hops for all combinations of

nusual incoming interfaces and destinations in Fig. 1 . The methods for

omputing these entries are described in [5,13] .

Effectively, FIFR computes interface-specific forwarding entries, i.e.,

 packet’s next hop depends not only on its destination but also on the in-

oming interface, i.e., the previous hop . To put this formally, each router 𝑖

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

Table 3

Interface-specific forwarding entries at router A from the

topology in Fig. 1 (A →A is meant for packets originating

at A).

Interface

Destination

B C D E F

A →A B C D B B

B →A C C D C D

C →A B B D B B

D →A B C B B B

h

a

(

e

w

W

h

a

c

𝑖

a

M

r

n

i

(

t

t

u

h

C

p

e

t

r

i

a

t

s

p

b

r

H

f

s

t

A

c

a

3

u

p

r

t

n

r

h

Table 4

Interface-specific forwarding entries at

router A in Fig. 1 when it is updated (in

ac era) with the failure of B - E.

Interface

Destination

B C D E F

A →A B C D C C

B →A - C D C C

C →A B D D D D

D →A B C C C C

e

i

F

t

n

B

F

u

i

p

w

w

t

f

A

p

t

F

n

l

t

u

a

r

d

W

f

i

U

Fig. 2. An illustrative scenario for pointing out the looping problem during

convergence with FIFR and traditional link state updates. Link U - W is down

and not all routers have updated their tables. Only router 𝑇 is in the ac era. Its

new next hop and back hop to W are R and V respectively. With the new back

hop, packets from P to W traverse a loop P →R →T →V →S →R →T.
as a forwarding entry

𝑑
𝑖

per each destination 𝑑. In addition, it keeps

 backwarding entry

𝑑
𝑗→𝑖

per each destination 𝑑 and neighbor 𝑗 ∈

𝑑
𝑖

both

𝑑
𝑖

and

𝑑
𝑗→𝑖

are sets, as there could be multiple shortest paths of

qual cost). Let

𝑑
𝑗→𝑖

be the farthest link along a shortest path from 𝑖 to 𝑑,

hose failure would cause the packet to 𝑑 arrive through interface 𝑗→𝑖 .

hile

𝑑
𝑖

is the set of usual next hops from 𝑖 to 𝑑,

𝑑
𝑗→𝑖

is the set of next

ops from 𝑖 to 𝑑 without the link

𝑑
𝑗→𝑖

. When

𝑑
𝑗→𝑖

is ∅,

𝑑
𝑗→𝑖

is the same

s

𝑑
𝑖

. Once the set of next hops and back hops for each destination are

omputed, packets can be forwarded as follows. A packet originating at

 to destination 𝑑 is forwarded to

𝑑
𝑖

. A packet destined for 𝑑 arriving

t 𝑖 through neighbor 𝑗 is forwarded to

𝑑
𝑗→𝑖

if 𝑗 ∈

𝑑
𝑖

, otherwise to

𝑑
𝑖

.

oreover, a packet to 𝑑 that were to be forwarded to the next hop 𝑗 is

erouted by 𝑖 to

𝑑
𝑗→𝑖

when the link 𝑖 - 𝑗 is down and all other routers are

ot yet notified and converged to the new topology.

The forwarding and backwarding entries can effectively be combined

nto one interface-specific table per interface, as in Table 3 for router A

the first row shows the next hops for packets originating at A). Note

hat most entries are usual next hops along the shortest paths. But for

he interface B →A, the next hops for B, E and F are different from the

sual forwarding entries. So, a packet to F is forwarded to the usual next

op B if it originates at A (using A →A entry) or if it arrives at A from

 (using C →A entry) or D (using D →A entry). On the other hand, if the

acket to F arrives at A from B, it is forwarded to D (using the B →A

ntry for F). Also, when an A - B link is down, packets to B, E, and F

hat were to be forwarded to B are rerouted to back hops C, C, and D

espectively (using B →A entries), without involving the control plane . It

s also important to emphasize that these entries are computed a priori

nd not on the fly . Moreover, since routers nowadays maintain a copy of

he FIB at each interface to perform forwarding at line speed, interface-

pecific forwarding can be implemented without any changes to the data

lane . Chiesa et al. [27] proposes a primitive for fast reroute which can

e leveraged to efficiently implement schemes like FIFR.

It has been shown that FIFR guarantees loop-free forwarding to all

eachable destinations in case of a single link or router failure [5,13] .

owever, because the packets are rerouted along alternate paths only

rom the point of failure, the resulting paths are suboptimal. For in-

tance, in the above example, when link B - E is down, a packet from A

o F traverses the path A →B →A →D →F, compared to the optimal path

 →C →E →F. Therefore, it is desirable to initiate a link state update in

ase of a long-lasting failure, even while performing fast reroute, so that

ll routers forward along optimal routes.

.2. FIFR with traditional link state updates

We now consider the combination of FIFR and traditional link state

pdates and show that FIFR helps mitigate but does not eliminate the

roblem of forwarding loops during convergence.

Consider the topology in Fig. 1 , where the link B - E is down and all

outers are notified of its cost change from 1 to ∞. Due to the delays in

he propagation of the link state advertisements and recomputation of

ew forwarding entries, it is possible that B starts forwarding using the

ecomputed next hops, whereas A continues forwarding using old next

ops. For convenience of discussion, we say that B, with new forwarding
4
ntries, is in ac (after change) era and A, with old forwarding entries, is

n bc (before change) era. Suppose A is forwarding a packet destined for

. Router A, being unaware that B - E link is down, forwards that packet

o its usual next hop B. Since B is in the ac era, it will forward to its new

ext hop A. Without FIFR, this makes the packet to loop between A and

. With FIFR, on the other hand, when B forwards a packet destined for

 to A, instead of forwarding it back to B, node A will forward that to D,

sing interface-specific forwarding. D, no matter what era it is in, will

n turn forward the packet to F. Thus the packet from A to F takes the

ath A →B →A →D →F.

Suppose A is in the ac era. Then its forwarding/backwarding entries

ill be updated as in Table 4 . The new next hop from A to F is C. So, A

ill forward the packet destined for F to C. Since B-E link is not along

he shortest path from C to F it will forward the packet to E, which will

orward to F. Thus, when A is in the ac era, packets destined for F take

 →C →E →F path. Hence, packets from A to F are delivered along the

ath A →B →A →D →F or A →C →E →F without causing any loop irrespec-

ive of the order in which A and B are updated. For the topology in

ig. 1 , we find that updating about any link failure, not just B - E, does

ot cause loops during convergence with FIFR, even with traditional

ink state updates, regardless of the order of routers updating their FIBs.

The above observation does not hold across all topologies. Consider

he topology in Fig. 2 , where the link U - W is down and a link state

pdate is triggered with cost ∞. Assume that router T enters the ac era,

s it has updated its forwarding and backwarding entries, whereas the

est of the routers are still in the bc era. Suppose P has a packet for

estination W. Table 5 shows the next hop and back hop for destination

 at each router in the bc era. As per the bc topology, the shortest path

rom P to W is P →R →T →U →W. So P forwards it to R. Router R, which

s also in the bc era, forwards it to T.

According to T, which is in the ac era, the new shortest path, without

 - W link, is T →R →S →V →X →W. Therefore, its new next hop to W is

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

Table 5

Next hops and back hops to destination W in bc era

(with link U - W). For instance, a packet destined

for W is forwarded by node R to the usual next

hop T if it arrives from any node other than T. But

if a packet to W arrives at R from T, it is forwarded

to the back hop S (avoiding the key link U - W).

Node Next Hop Back Interface Back Hop

P R R →P Q, Y

Q U U →Q P

R T T →R S

S R R →S V

T U U →T R

U W W →U T

V S S →V X

X W W →X V

Y Z Z →Y P

Z U U →Z Y

Table 6

Next hops and back hops to destination W in ac

era (without link U - W). Now, the next hop from

T to W is R and the back hop for packets to W

arriving at T from R is V.

Node Next Hop Back Interface Back Hop

P R R →P Q, Y

Q U U →Q P

R S S →R T

S V V →S R

T R R →T V

U T T →U V

V X X →V –

X W W →X –

Y P P →Y Z

Z U U →Z Y

R

T

w

a

f

(

r

b

i

P

3

t

l

i

l

d

f

d

s

p

t

t

t

n

a

B

Fig. 3. An illustrative scenario of looping with FIFR and progressive updates.

Link T - U is down and it’s cost is being progressively incremented, currently

from 4 to 5. Router 𝑆 is in the ac era, while all others in the bc era.

w

t

t

c

c

a

c

t

i

B

e

n

t

h

m

t

l

t

u

n

S

o

f

R

t

h

i

W

S

B

t

w

F

p

w

F

4

w

b

c

m

i

r

t

. Accordingly, the new back hop for packets destined for W arriving at

 from R is V. This is because, T determines, based on the ac topology

ithout U - W link, that S - V is the keylink, whose failure would cause

 packet for W to arrive, along the (new) reverse shortest path, at T

rom R. Consequently, T forwards the packet to its new back hop V

 Table 6 shows the next hops and back hops for destination W at each

outer according to the ac topology). But, router V, which is still in the

c era, forwards it to its usual next hop S. Being in the bc era, S forwards

t to R. Again, R forwards it to T. Thus, the packet traverses the path

 →R →T →V →S →R →T, forming a loop.

.3. FIFR with progressive link metric increments

Progressive link metric increments [8] has been proposed as a way

o prevent forwarding loops during convergence. Therefore, in the fol-

owing, we explore the combination of FIFR and progressive link metric

ncrements. First, we briefly describe this approach and then show that

oops can still occur under FIFR even with incremental link metric up-

ates.

The main idea behind the progressive link metric increments is as

ollows. Again, consider the scenario in Fig. 1 , where the link B - E is

own. Instead of sending an update with B - E cost of ∞, suppose we

end a sequence of updates with a cost of 2, 3, and so on, each with a

rogressively higher cost, until B - E is not along any shortest path. Note

hat a subsequent update is sent only after the network has converged to

he previous update. Consider the first update in this sequence, where

he cost of B - E is increased from 1 to 2. With the old cost of 1 or the

ew cost of 2, the shortest paths from A to E and B to E remain the same,

nd hence this update would not cause a forwarding loop, even if A and

 are in different eras.
5
When B - E cost is updated to 3, A →C →E becomes a shortest path

ith the same cost as that of A →B →E, while the shortest path from B

o E remains B →E. Again, regardless of the eras routers A and B are in,

his update does not cause a forwarding loop. Now, by increasing B - E

ost to 4, A →B →E ceases to be a shortest path. The following update of

ost to 5 makes A one of the next hops from B to E. Since B is no longer

 next hop from A to E after the previous update, this update does not

ause any back and forth between A and B. Next, updating the B - E cost

o 6 or higher, effectively eliminates the link from the topology, since

t is not along any shortest paths. We can then send a final update with

 - E cost of ∞, to inform all routers that the link is actually down. Thus,

ach update yields loop-free convergence and progressively brings the

etwork to the desired target topology without B - E. It is not necessary

hat the link cost has to be incremented in steps of 1 to avoid loops. It

as been shown that loop-freedom can be assured even with a shorter

etric sequence [8] , which is specific to each link and depends on the

opology.

Unfortunately, we find that progressive updates do not guarantee

oop-free convergence with FIFR. Consider the topology in Fig. 3 , where

he T - U link is down. Suppose the T - U cost is being progressively

pdated and currently it is being changed from 4 to 5. When S computes

ew tables, with cost 5, the shortest path to destination W would be

 →R →T →U →W. Also, U - W ceases to be a key link and none of the

ther links along its shortest path would be a key link, since any of their

ailures would not cause the packet to arrive at S through the interface

 →S. Therefore, for all interfaces, next hop from S to W would be set

o R. On the other hand, R, which is still in the bc era, has T as its next

op for W. Also, S is the back hop to W for T →R interface (since U - W

s a key link with T - U cost of 4 as its failure would cause the packet for

 to arrive at R through T →R interface). In this scenario, a packet from

 to W takes the path S →R →T and then gets rerouted along T →R →S.

ecause there is no key link associated with R →S, router S forwards it

o R, forming a loop.

To summarize, FIFR incurs forwarding loops during convergence

ith both traditional and progressive link state updates. Interestingly,

IFR helps traditional updates in preventing some loops but hurts

rogressive updates by introducing some loops. The question now is,

hether it is feasible to achieve loop-free, let alone fast, convergence with

IFR?

. Proposed approach

This section answers the above question affirmatively. Specifically,

e find that FIFR with link metric increments can be made loop-free

y deferring the installation of new interface-specific back hops to post-

onvergence. More importantly, deferred updating of back hops alone

ostly eliminates loops during convergence with FIFR and link metric

ncrements are rarely needed, thus enabling fast resumption to optimal

outing. In the following, we first illustrate the proposed approach and

hen prove its loop-free convergence.

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

Table 7

Next hops and back hops to destination W with

deferred updating of back hops. T, which is in ac

era, updates its next hop but uses bc back hop.

Note that back interface for T is U →T instead of

R →T and its back hop is R, which happens to be

the same as its next hop. All other nodes are in

the bc era and hence use bc next hops and back

hops.

Node Next hop Back interface Back hop

P R R →P Q, Y

Q U U →Q P

R T T →R S

S R R →S V

T R U →T R

U W W →U T

V S S →V X

X W W →X V

Y Z Z →Y P

Z U U →Z Y

4

a

n

n

r

u

f

t

T

i

s

d

T

v

t

d

o

T

h

N

c

p

f

P

i

R

t

l

a

e

i

c

t

W

1

t

S

Fig. 4. An illustration of transient forward loops during convergence with FIFR.

Suppose the link I - M is down and only J, K, and L are in the ac era and the rest

are in the bc era. Even with deferred updating of back hops, packets from J to

M loop along the path J →L →N →O →K →J →L.

Table 8

Next hops and back hops to destination M. Next

hops at J, K, and L are based on the ac topology,

whereas the rest of the entries including all back

hops are based on the bc topology.

Node Next hop Back interface Back hop

G H H →G M

H I I →H G

I M M →I H

J L H →J K

K J I →K J

L N J →L N

N L L →N O

O K K →O N

t

n

o

i

M

a

t

a

a

N

s

N

J

r

w

O

t

a

.1. Deferred updating of back hops

The discussion of convergence with FIFR thus far assumes that when

 router receives a link state update, it simultaneously updates both its

ext hops and back hops, i.e., a router forwards packets using either bc

ext-hops/back-hops or ac next-hops/back-hops. But, to achieve optimal

outing, a router needs to update only its next-hops. On the other hand,

pdating of back-hops prepares the router for protection against another

uture failure. Therefore, it is worth exploring the benefits of decoupling

he updating of next-hops and back-hops.

We observe that the reason for the looping scenario in Fig. 2 is that

, which is in ac era, misinterprets the usual forwarding from R, which is

n bc era, as unusual backwarding due to another failure along the new

hortest path T →R →S →V →X →W, which obviously is not the case. This

oes not happen if T does not treat R →T as a backwarding interface.

herefore, we propose to eliminate the possibility of such loops during con-

ergence by deferring the updating of back hops . In other words, a router in

he ac era forwards using ac next hops and bc back hops during convergence .

Table 7 shows this combination of ac next hops and bc back hops for

estination W. In this table, T has updated its next hop from U to R based

n the ac topology, but keeps the back hop as R for packets arriving at

 from U (instead of changing it to V as per Table 6). The new ac back

ops as in Table 6 are installed once the network converges to the ac era.

ote that deferred updating of back hops does not delay the network’s

onvergence to optimal routing, since back hops are needed only for

rotection against a subsequent failure.

Now, let us revisit the above scenario of a packet being forwarded

rom P to W. As before, the packet will go from P to T along the path

 →R →T. Then, with the deferred updating of back hops, T will forward

t based on the bc back hop to R. Thereafter, the packet will reach V from

, along the reverse shortest path R →S →V. Therefore, V will forward it

o its back hop X. Thus, the packet reaches its destination, along the

oop-free path P →R →T →R →S →V →X →W.

This approach of deferred updating of back hops also helps allevi-

te the looping problem with link metric increments in Fig. 3 . In this

xample, the T - U cost is being progressively updated and currently it

s being changed from 4 to 5. With deferred updating of back hops, S

hanges its usual forwarding entries, but keeps the back hop for W in

he table of R →S interface, which is along the reverse shortest path to

, to be V (since U - W is a key link with the original T - U cost of

 as its failure would cause the packet for destination W to arrive at S

hrough R →S interface). Therefore, a packet from S to W takes the path

 →R →T →R →S →V →X →W.
6
While deferred updating of back hops eliminates loops in the above

wo cases, it is possible to handcraft a topology where a particular sce-

ario of traditional link state updates can cause looping . Consider the topol-

gy shown in Fig. 4 , where the link I - M is down and a link state update

s triggered with cost ∞. Suppose router J has a packet for destination

. Assume that I, J, K, and L have recomputed their forwarding tables

nd are in the ac era, whereas the other routers are in the bc era.

Table 8 shows the next hop and back hop at each router for des-

ination M. Only the next hop entries at J, K, and L are based on the

c topology. As per the ac topology, the shortest path is J →L →N →M,

nd so J forwards it to L. L, which is also in the ac era, forwards it to

 (here the deferred bc back hop and ac next hop happens to be the

ame). According to N, which is in the bc era, the usual shortest path is

 →L →J →H →I →M. Based on its inference on bc view, only the failure of

 - L can cause a packet for M to arrive through L →N interface along the

everse shortest path. Therefore, since the backward path from N to M

ithout the key link J →L is N →O →K →I →M, the packet is forwarded to

, which in turn forwards to K. Since K is in the ac era, its shortest path

o M, without I - M, is K →J →L →N →M. Hence, K forwards to J, which

gain forwards to L, causing a loop.

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

Table 9

Notation.

 𝑑
𝑖

set of next hops from 𝑖 to 𝑑

 𝑑
𝑗→𝑖

set of back hops from 𝑗→𝑖 to 𝑑

𝑑
𝑗→𝑖

key link corresponding to 𝑗→𝑖 to 𝑑

 𝑢−𝑣 cost of the link 𝑢 - 𝑣

 𝑖 shortest path tree (SPT) rooted at 𝑖

(, 𝑑) shortest path from root of to 𝑑

 (, 𝑑) shortest distance from root of to 𝑑

I

s

I

p

t

a

s

s

t

r

A

i

i

a

e

t

e

l

b

a

b

t

A

4

l

i

i

f

g

t

o

t

𝑑

i

f

i

t

𝑠

i

c

c

a

t

f

c

F

v

𝑗

1

u

t

i

m

m

m

t

t

I

w

l

S

d

s

i

a

b

⃖

t

t

f

n

a

1 Using the arguments analogus to that in [8] , which shows that updating

with optimized metric sequence is loop-free, it is possible to prove that similar

sequence with larger metric increments also does not cause loops with FIFR.
We propose to employ progressive updates for such links, i.e., cost of

 - M is increased gradually with a sequence of updates. One such metric

equence is 10, 14, 19, ∞. Imagine the first update, where the cost of

 - M is set to 10. With this cost, regardless of the eras each router is in,

acket from J to M is forwarded to I, which then reroutes it to H, along

he path I →H →G →M. H infers the failure of I - M, as the packet to M

rrives through unusual interface I →H, and forwards it to G. G does the

ame and forwards it to M. Thus, with each update step, one or more

ource-destination pairs’ shortest paths are made equal to that passing

hrough I - M or turned away from I - M, while packets arriving at I are

erouted to the destination along a loop-free path with the help of FIFR.

t the end of progressive updates, each router can independently install

ts new back hops corresponding to the topology without the failed link,

n preparation for a potential subsequent failure.

We refer to this combination of FIFR, deferred updating of back hops,

nd progressive link metric increments only when necessary as FIFR++ . Op-

rations under FIFR++ can be summarized as in Algorithm 1 with no-

ation in Table 9 . A key aspect of FIFR++ is that while the forwarding

ntries at a router 𝑖 , 𝑖 , are recomputed upon receiving each progressive

ink state update, its backwarding entries corresponding to each neigh-

or 𝑗, 𝑗→𝑖 are recomputed only when the link is finally shut down. The

dvantage of FIFR++ is that it guarantees loop-free forwarding both

efore and during convergence in case of single link failures. We prove

his in the next section.

lgorithm 1 Operations at router 𝑖 under FIFR++

1: if originates a packet 𝑝 to destination 𝑑

2: Forward 𝑝 to

𝑑
𝑖

3:

4: if receives a packet 𝑝 to 𝑑 from neighbor 𝑗

5: if 𝑗→𝑖 is a back interface

6: Forward 𝑝 to

𝑑
𝑗→𝑖

7: else

8: Forward 𝑝 to

𝑑
𝑖

9:

10: if detects a failure of an adjacent link to 𝑣

11: Reroute packets to 𝑑 with next hop 𝑣 to

𝑑
𝑣→𝑖

12: if Link 𝑖 - 𝑣 needs metric increments

13: Send LSAs to progressively update 𝑖−𝑣 to ∞
14: else

15: Send LSA to update 𝑖−𝑣 to ∞
16: Recompute 𝑖 without 𝑖 - 𝑣

17: Recompute 𝑗→𝑖 without 𝑖 - 𝑣 for each neighbor 𝑗

18:

19: if receives an LSA with new cost 𝑐 for link 𝑢 - 𝑣

20: 𝑢−𝑣 ← 𝑐

21: Recompute 𝑖 with new cost of 𝑢 - 𝑣

22: if 𝑐 = ∞
23: Recompute 𝑗→𝑖 without 𝑢 - 𝑣 for each neighbor 𝑗

.2. Proof of loop ‐free convergence with FIFR ++

Now, we sketch a proof that FIFR++ is loop-free, based on the fol-

owing assumptions: i) There is only one failed link in the network that

s protected with FIFR; ii) Only one link state update is being propagat-
7
ng throughout the network; iii) Each progressive update increments the

ailed link cost by 1; 1 iv) Links are bidirectional with symmetric costs.

Let 𝑢 - 𝑣 , with original cost of 𝑢−𝑣 , be the failed link. Its cost is pro-

ressively updated and currently it is being changed from ⃖⃖ 𝑢−𝑣 (cost in

he bc era) to ⃖⃗ 𝑢−𝑣 (cost in the ac era). For other symbols too, we use the

verhead left arrow to refer to the bc era state and right arrow to refer

o that in the ac era.

Suppose a packet is being forwarded from source 𝑠 to destination

. Without loss of generality, let us assume that a packet from 𝑠 to 𝑑,

f it were to cross the link 𝑢 - 𝑣 , will pass in the direction 𝑢 →𝑣 . In the

ollowing, we show that, under FIFR++, this packet does not get caught

n a loop, i.e., does not traverse the same link in the same direction more

han once.

Property 1: A packet does not loop if 𝑢 →𝑣 ∉ (⃖⃖ ⃖ 𝑠 , 𝑑)
If 𝑢 →𝑣 ∉ (⃖⃖ ⃖ 𝑠 , 𝑑) , then 𝑢 →𝑣 ∉ (⃖⃗⃖ 𝑠 , 𝑑) , i.e., if the shortest path from

 to 𝑑 in the bc topology does not include 𝑢 →𝑣 , then same is the case

n the ac topology too. This is true because the path through 𝑢 →𝑣 gets

ostlier as the cost 𝑢−𝑣 is increased from bc to ac . Since this is the only

hange between the bc and ac topologies, (⃖⃖ ⃖ 𝑠 , 𝑑) = (⃖⃗⃖ 𝑠 , 𝑑) . Therefore,

ll routers along that path forward the packet consistently to 𝑑.

Property 2: A packet does not loop if it is not rerouted by 𝑢 .

As per FIFR++, a packet may be forwarded using back hops in

ables, only after it reaches 𝑢 and gets rerouted. In all other cases, it is

orwarded using usual next hops in tables. Suppose that is not the

ase and a router 𝑖 forwards the packet using the back hop entry

𝑑
𝑗→𝑖

.

or this to happen, 𝑖 should be a next hop to 𝑑 according to 𝑗 and vice

ersa. Obviously this can not happen if 𝑖 and 𝑗 are in the same era.

Let us assume that router 𝑖 is in the ac era and 𝑗 in the bc era. Then, in

’s view of the topology, (⃖⃖ ⃖ 𝑗 , 𝑑) > (⃖⃖ ⃖ 𝑖 , 𝑑) and in 𝑖 ’s view, (⃖⃗⃖ 𝑖 , 𝑑) >
 (⃖⃗⃖ 𝑗 , 𝑑) . This is not possible considering that (⃖⃗⃖ 𝑗 , 𝑑) = (⃖⃖ ⃖ 𝑗 , 𝑑) or

 (⃖⃗⃖ 𝑗 , 𝑑) = (⃖⃖ ⃖ 𝑗 , 𝑑) + 1 , and (⃖⃗⃖ 𝑖 , 𝑑) = (⃖⃖ ⃖ 𝑖 , 𝑑) or (⃖⃗⃖ 𝑖 , 𝑑) = (⃖⃖ ⃖ 𝑖 , 𝑑) +
 . Similarly, when 𝑖 is in the bc era and 𝑗 in the ac era, no back hops are

sed to forward the packet.

In other words, when a packet is not rerouted by 𝑢 , all routers along

he path forward it using tables only and FIFR plays no role in forward-

ng it. This scenario is already shown be loop-free due to progressive link

etric increments [8] .

Property 3: A packet does not loop if it is rerouted by 𝑢 .

The path taken by a packet rerouted by 𝑢 can be split into 3 seg-

ents: a forward segment to the point of failure 𝑠 ⇝𝑢 , a backward seg-

ent 𝑢 ⇝𝑥 →𝑦 to a turning point 𝑦 (where it switches from backwarding

o forwarding), and an additional forward segment 𝑦 →𝑧 ⇝𝑑 to destina-

ion. Note that 𝑠 and 𝑥 can be 𝑢 itself and similarly 𝑧 can be same as 𝑑.

t follows from Property 2 that no looping occurs in the path 𝑠 ⇝𝑢 . Next,

e prove that the other two segments are also loop-free.

From the properties of FIFR, it is known that both the segments are

oop-free in the original topology (with original cost of 𝑢−𝑣 for 𝑢 - 𝑣).

ince back hops are based on the original topology, backwarding is

one consistently by the routers following 𝑢 . The only deviation is that

ome unusual incoming interfaces with associated back hops in the orig-

nal topology may no longer be unusual incoming interfaces in the bc or

c topology. Without loss of generality, let 𝑦 be the turning point from

ackwarding segment to forwarding segment.

We show that 𝑦 can safely switch from using backhops,

𝑑
𝑥→𝑦 , to either

⃖⃖

𝑑
𝑦 or ⃖⃖⃗

𝑑
𝑦 , when 𝑥 is no longer a next hop from 𝑦 to 𝑑. First, consider

he scenario when router 𝑦 is in the bc era. Let 𝑧 be the next hop from 𝑦

o 𝑑 in the bc topology (with cost ⃖⃖ 𝑢−𝑣 greater than original cost of 𝑢−𝑣
or link 𝑢 - 𝑣). Then, we can show that the packet from 𝑧 to 𝑑 would

ot arrive back at 𝑢 , avoiding any potential for looping. For 𝑧 to be

 next hop from 𝑦 in the bc topology, we must have (⃖⃖ ⃖ 𝑥 , 𝑑) + 𝐶 𝑥−𝑦 >

 (⃖⃖ ⃖ 𝑧 , 𝑑) + 𝐶 𝑦−𝑧 , whereas (𝑥 , 𝑑) + 𝐶 𝑥−𝑦 < (𝑧 , 𝑑) + 𝐶 𝑦−𝑧 in the original

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

Table 10

Summary of Rocketfuel topologies.

AS Number Name Nodes Edges

1221 Telstra 108 306

1239 Sprint 315 1944

1755 Ebone 87 322

3257 Tiscali 161 656

3967 Exodus 79 294

6461 Abovenet 141 748

Fig. 5. Percentage of links that cause transient loops during convergence.

t

e

p

f

P

w

d

p

f

b

t

c

p

b

a

5

e

t

g

b

A

1

t

i

l

e

o

s

(

u

Fig. 6. A part of the Missouri topology. Failure of link 49 - 63 can cause tran-

sient forwarding loop 7 →34 →62 →10 →4 →7 →34 between routers 7 and 49 during

convergence when only 10 and 62 are in the ac era.

Fig. 7. A part of the Oteglobe topology. When link 87 - 83 is down,

during network convergence packets between 2 and 83 would loop along

2 →73 →74 →80 →79 →4 →5 →2 →73 when only 79 and 80 are in the ac era.

a

e

R

i

b

d

l

t

t

w

h

b

i

—

l

w

v

l

a

w

i

o
opology. Considering that there is no change in the cost of any link

xcept 𝑢 - 𝑣 , this is possible only if 𝑢 →𝑣 ∉ (⃖⃖ ⃖ 𝑧 , 𝑑) , i.e., the shortest

ath from 𝑧 to 𝑑 does not pass through 𝑢 →𝑣 . Therefore, a packet gets

orwarded from 𝑧 to 𝑑 without getting caught in a loop according to

roperty 1.

Now, suppose router 𝑦 is in the ac era with 𝑧 as its next hop to 𝑑,

hereas 𝑥 was the next hop in the bc topology. Since 𝑧 or any other

ownstream routers may be in the bc era, the question is whether the

acket from 𝑧 to 𝑑 reaches 𝑢 and then gets rerouted to 𝑦 , resulting in a

orwarding loop. For that to happen, the backward path 𝑢 ⇝𝑥 →𝑦 must

e shorter than 𝑢 ⇝𝑧 →𝑦 , while the forward path 𝑦 →𝑧 ⇝𝑑 must be shorter

han 𝑦 →𝑥 ⇝𝑑. This is an impossibility if 𝑧 ⇝𝑑 were to pass through 𝑢 ,

onsidering that link costs are symmetric.

Finally, if the failure of 𝑢 - 𝑣 partitions the network and there is no

ath from 𝑠 to 𝑑, then the packet is dropped, instead of getting rerouted,

y 𝑢 or 𝑣 . Thus, FIFR++ can guarantee loop-free forwarding to reach-

ble destinations during convergence.

. Performance evaluation

We have validated the proposed FIFR++ approach using 6 Rock-

tfuel topologies [28] (details of which are listed in Table 10) and 262

opologies in the Internet Topology Zoo collection [15] . We have also

enerated 12 random topologies using BRITE [29] , varying the num-

er of nodes from 25 to 150, each with average degrees of 4 and 6.

ll together our evaluation set includes 280 topologies with a total of

7339 bidirectional links. We have developed a customized simulator

hat brings down one link at a time in the given topology and verifies

f a packet from each affected (whose shortest path passes through that

ink) pair of source and destination nodes gets caught in a loop, consid-

ring all the possible combinations where each node can be in either bc

r ac state.

Fig. 5 compares how different mechanisms fare in avoiding tran-

ient forwarding loops during convergence. They are labelled NoFIFR

traditional link state updates without FIFR), FIFR (traditional link state

pdates with FIFR), FIFR+ (FIFR with deferred updating of back hops),
8
nd FIFR++ (FIFR+ with progressive metric increments when nec-

ssary). The results show that without FIFR around 35% of links in

ocketfuel topologies can cause loops during convergence. By employ-

ng FIFR alone even with traditional link state updates, this fraction can

e brought down drastically to around 2%. FIFR when coupled with

eferred updating of back hops completely eliminates the looping prob-

em, obviating the need for progressive metric increments, in Rocketfuel

opologies.

Fig. 5 also presents our evaluation results for Zoo and Random

opologies. It shows that in these topologies up to nearly 50% of the links

hen failed can cause transient loops during convergence. FIFR by itself

elps avoid most of these loops, reducing the fraction of loopy links to

elow 3% in Random and below 0.5% in Zoo topologies. Deferred updat-

ng of backhops along with FIFR nearly eliminates the looping problem

only 2 links in Zoo topologies, labelled Missouri and Oteglobe, and 1

ink in Random topologies cause loops.

Fig. 6 shows a part of the Missouri topology with a link

hich when goes down can cause a forwarding loop during con-

ergence, even with deferred updating of back hops. Suppose the

ink 63 - 49 is down and only the routers 10 and 62 are in the

c era with updated FIBs. Then, packets from router 7 to 49, that

ere earlier taking the path 7 →34 →62 →1 →63 →49 , now get caught

n the loop 7 →34 →62 →10 →4 →7 →34 . Similarly, in Oteglobe topol-

gy (Fig. 7 shows the relevant part) the shortest path between

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

Fig. 8. A part of the Random topology. Failure of link 7 − 9 can cause loop

1 →4 →3 →2 →1 →4 between 1 and 9 when only 3 and 4 are updated.

2

l

2

e

i

t

w

o

u

n

t

m

w

a

s

l

E

f

t

t

e

t

∞

u

l

i

Fig. 10. Comparison of metric sequences without FIFR and with FIFR++.

s

d

g

l

w

t

c

6

w

t

w

t

w

t

v

r

h

n

f

e

i

b

(

I

t

a

a

i

i
 and 83 is 2 →73 →74 →80 →81 →75 →90 →87 →83 . But the failure of

ink 79 − 80 can cause packets between 2 and 83 to loop along

 →73 →74 →80 →79 →4 →5 →2 →73 if only nodes 79 and 80 are in the ac

ra. Finally, in a Random topology we generated (a subgraph of which

s shown in Fig. 8) the link 7 − 9 when down causes packets from 1 to 9,

hat were traversing 1 →4 →5 →8 →7 →9 , to loop along 1 →4 →3 →2 →1 →4
hen only nodes 3 and 4 are in ac era.

Except in these 3 specific instances, where a particular combination

f nodes are in the ac era while all others are in the bc era, deferred

pdating of back hops do not cause forwarding loops in any other sce-

arios. Even in those 3 rare cases out of the total 17339 links in 280

oplogies we have considered, by employing progressive metric incre-

ents, FIFR++ ensures loop-free convergence and disruption-free for-

arding.

Apart from avoiding loops during convergence, FIFR++ approach

lso helps accelerate convergence after a failure for the following rea-

ons: i) Except in very rare in cases, FIFR++ can directly announce the

ink cost as ∞ instead of progressively incrementing the cost to ∞. ii)

ach router can independently update its FIB without having to wait

or signaling from other routers to enforce a particular order. To illus-

rate this, in Fig. 9 we plot the percentage of links in each category of

opologies that need a specific progressive metric sequence length to

nsure loop-free convergence. Note that the sequence length indicates

he number of incremental changes needed before the link cost is set to

. So the sequence length is considered to be 0 if the link cost can be

pdated directly to ∞. It is evident from Fig. 9 that without FIFR, many

inks require multiple rounds of progressive updates before the network

s converged to a state without the failed link. The progressive metric
Fig. 9. Percentage of links with different lengths of progressive metric increm

9
equence length for some links could be up to 8, causing a significant

elay in the network convergence.

With FIFR++, on the other hand, only 3 links out of all the topolo-

ies need progressive updates. Furthermore, even for those links, the

ength of incremental metric sequence with FIFR++ is less than that

ithout FIFR, as shown in Fig. 10 . Overall, these results demonstrate

hat order of FIB updates rarely matters with FIFR and thus FIFR++

an not only achieve fast route but also fast convergence.

. Limitations and discussion

Handling link up events : The focus of this paper has been about dealing

ith link down events, which involves performing fast reroute around

he failed link while achieving fast convergence. On the other hand,

hen a link comes up and that leads to a shorter path to a destination,

he adjacent nodes can utilize it to forward packets to that destination

ithout causing any loops. However, when other nodes are notified of

he link up event, it is still possible to have loops during network con-

ergence. While the progressive metric decrements approach can be di-

ectly applied to address looping problem, deferred updating of back

ops alone is not sufficient to accelerate loop-free convergence. Fortu-

ately, interface-specific forwarding can still be leveraged to eliminate

orwarding loops with unordered FIB updates corresponding to link up

vents, using an approach similar to that in [10] . Briefly, the key idea

s to make use of unusual incoming interfaces to detect packet traversal

etween bc and ac routers and switch to forwarding along bc next hops

similar to employing bc back hops in FIFR++) during convergence.

mplementation and evaluation of this integrated approach is a part of

he on-going work.

Link metric changes besides up and down : We have thus far discussed

bout dealing with link down and up events. The proposed FIFR++

pproach can be used to increase the link cost to a certain target metric,

nstead of ∞. An issue that arises then is when to update the backward-

ng entries to reflect the new cost. We suggest updating back hops after
ent sequences (each bar is labelled with the absolute number of links).

P.K. Penumarthi, A. Pecora, S. Sur et al. High-Confidence Computing 2 (2022) 100072

a

S

e

w

a

i

r

r

l

t

7

b

l

s

e

w

p

2

u

l

f

F

i

t

c

t

D

i

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
 certain timeout interval since a previous link cost increase update.

imilarly, the approach discussed above works for link cost decrease

vents too. Again, loop-free convergence is achieved in both these cases

ithout any coordination between routers.

Router failures and asymmetric link costs : Our discussion and the proof

ssumed that there is only one link failure in the network. The question

s can FIFR++ deal with failure of multiple links attached to a single

outer. Since both FIFR and progressive updates can individually handle

outer failures, we plan to investigate that. Similarly, this paper assumes

inks are bidirectional with symmetric link costs. We plan to expand on

his work to deal with asymmetric link weights too.

. Conclusion

This paper investigated the possibility of using failure inference

ased fast reroute (FIFR) along with a link state update mechanism for

oop-free fast convergence while performing fast reroute. We have ob-

erved that FIFR alone mitigates forwarding loops during convergence,

ven with traditional link state updates. Furthermore, when coupled

ith deferred updating of back hops, it nearly eliminates the looping

roblem. In our evaluation, only 3 out of 17339 links corresponding to

80 real and random topologies could cause transient loops for a partic-

lar combination of updated and not-yet-updated nodes. We proved that

oop-free convergence can be guaranteed by employing FIFR with de-

erred updating of back hops and progressive metric increments (called

IFR++). Overall, FIFR++ achieves two fundamental goals of rout-

ng, fast reroute and fast convergence, without making any modification

o the IP datagram or requiring coordination between routers. We are

urrently exploring the extension of this work to router failures and

opologies with asymmetric link weights.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

eferences

[1] P.K. Penumarthi, A. Pecora, J.M. O’Kane, S. Nelakuditi, Failure-inference-based fast

reroute with progressive link metric increments, ICCCN, 2018 .

[2] S. Bryant, C. Filsfils, S. Previdi, M. Shand, N. So, Remote Loop-Free Alternate (LFA)

Fast Reroute (FRR), 2015, (RFC 7490).

[3] S. Bryant, S. Previdi, M. Shand, A framework for IP and MPLS fast reroute using

not-via addresses, 2013, (RFC 6981).

[4] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, I. Stoica,

Achieving convergence-free routing using failure-carrying packets, ACM SIGCOMM,

2007 .
10
[5] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, C.-N. Chuah, Fast local rerouting for

handling transient link failures, IEEE/ACM Trans. Netwo. 15 (2) (2007) 359–

372 .

[6] S. Nelakuditi, et al., Mitigating transient loops through interface-specific forwarding,

Comput. Netw. 52 (3) (2008) 593–609 .

[7] P. Francois, O. Bonaventure, Avoiding transient loops during IGP convergence in ip

networks, ACM Trans. Netw. 15 (6) (2007) 1280–1292 .

[8] P. Francois, M. Shand, O. Bonaventure, Disruption free topology reconfiguration in

OSPF networks, IEEE INFOCOM, 2007 .

[9] A. Li, X. Yang, D. Wetherall, SafeGuard: safe forwarding during routing changes,

ACM CoNEXT, 2009 .

10] G. Robertson, N. Roy, P.K. Penumarthi, S. Nelakuditi, J.M. O’Kane, Loop-free con-

vergence with unordered updates, IEEE Trans. Netw. Serv. Manag. (2017) .

11] M. Chiesa, A. Kamisi ń ski, J. Rak, G. Rétvári, S. Schmid, A survey of fast-recovery

mechanisms in packet-switched networks, IEEE Commun. Surv. Tutor. 23 (2) (2021)

1253–1301, doi: 10.1109/COMST.2021.3063980 .

12] A. Kvalbein, et al., Fast IP network recovery using multiple routing configurations,

IEEE Infocom, 2006 .

13] J. Wang, S. Nelakuditi, IP fast reroute with failure inferencing, INM, 2007 .

14] G. Retvari, J. Tapolcai, G. Enyedi, A. Csaszar, IP fast reroute: loop free alternates re-

visited, in: INFOCOM, 2011, pp. 2948–2956, doi: 10.1109/INFCOM.2011.5935135 .

15] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The Internet topology

zoo, IEEE J. Sel. Areas Commun. 29 (9) (2011) 1765–1775 .

16] L. Csikor, G. Rétvári, On providing fast protection with remote loop-free alternates,

Telecommun. Syst. 60 (4) (2015) 485–502 .

17] W. Braun, M. Menth, Loop-free alternates with loop detection for fast reroute in

software-defined carrier and data center networks, J. Netw. Syst. Manag. 24 (3)

(2016) 470–490 .

18] S.S. Lor, R. Landa, M. Rio, Packet re-cycling: eliminating packet losses due to net-

work failures, ACM HotNets, 2010 .

19] T. Holterbach, S. Vissicchio, A. Dainotti, L. Vanbever, Swift: predictive fast reroute,

in: Proceedings of the Conference of the ACM Special Interest Group on Data Com-

munication, 2017, pp. 460–473 .

20] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, S. Shenker, Ensuring connectiv-

ity via data plane mechanisms, in: 10th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 13), 2013, pp. 113–126 .

21] N. Feamster, J. Rexford, E. Zegura, The road to SDN, Queue 11 (12) (2013) 20 .

22] S. Vissicchio, O. Tilmans, L. Vanbever, J. Rexford, Central control over distributed

routing, ACM SIGCOMM, 2015 .

23] S. Litkowski, B. Decraene, C. Filsfils, P. Francois, Micro-loop prevention by local

delay, 2018, (RFC 8333).

24] F. Clad, P. Merindol, J.-J. Pansiot, P. Francois, O. Bonaventure, Graceful convergence

in link-state ip networks: A lightweight algorithm ensuring minimal operational im-

pact, IEEE/ACM Trans. Netw. 22 (1) (2014) 300–312 .

25] F. Clad, et al., Computing minimal update sequences for graceful router-wide recon-

figurations, IEEE/ACM Trans. Netw. 23 (5) (2015) 1373–1386 .

26] J. Ku čera, R.B. Basat, M. Kuka, G. Antichi, M. Yu, M. Mitzenmacher, Detecting rout-

ing loops in the data plane, in: Proceedings of the 16th International Conference on

emerging Networking EXperiments and Technologies, 2020, pp. 466–473 .

27] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisi ń ski, G. Nikolaidis,

S. Schmid, PURR: a primitive for reconfigurable fast reroute: hope for the best

and program for the worst, in: Proceedings of the 15th International Conference

on Emerging Networking Experiments And Technologies, 2019, pp. 1–14 .

28] N. Spring, R. Mahajan, D. Wetherall, Measureing ISP topologies with Rocketfuel,

ACM SIGCOMM, 2002 .

29] A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE: an approach to universal topology

generation, MASCOTS, 2001 .

http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0001
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0004
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0005
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0006
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0007
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0008
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0009
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0010
https://doi.org/10.1109/COMST.2021.3063980
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0012
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0013
https://doi.org/10.1109/INFCOM.2011.5935135
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0015
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0016
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0017
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0018
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0019
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0020
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0021
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0022
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0024
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0025
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0026
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0027
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0028
http://refhub.elsevier.com/S2667-2952(22)00024-1/sbref0029

	Order of FIB updates seldom matters: Fast reroute and fast convergence with interface-specific forwarding
	1 Introduction
	2 Related work
	3 The problem of convergence with FIFR
	3.1 Failure inference based fast reroute
	3.2 FIFR with traditional link state updates
	3.3 FIFR with progressive link metric increments

	4 Proposed approach
	4.1 Deferred updating of back hops
	4.2 Proof of loop-free convergence with FIFR++

	5 Performance evaluation
	6 Limitations and discussion
	7 Conclusion
	Declaration of Competing Interest
	References

