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Millimeter-wave

0 GHz 10 GHz 20 GHz 30 GHz 300 GHz

Millimeter-wave (30 GHz to 300 GHz)

Wi-Fi and LTE

Wavelength: 10 mm to 1 mm

Millimeter-wave
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Need of Millimeter-wave
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Source: Statista

~4x 

Deploy more base-stations called picocell
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Picocell

❑ 10-12 m range

❑ Small size

❑ Low power
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Picocell
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Picocell
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Possible

Client 

Locations
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25 dB

Corner Deployment
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Possible

Client 

Locations
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Optimal Deployment
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Possible Ways for Link Connectivity

picocell client

Line-of-Sight (LOS) Path
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picocell client

Incorrect Non-Line-of-Sight (NLOS) Path
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Possible Ways for Link Connectivity



picocell

client

Correct Non-Line-of-Sight (NLOS) Path
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Possible Ways for Link Connectivity
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Possible Ways for Link Connectivity
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Possible Ways for Link Connectivity

How can we deploy picocells correctly based on 
surrounding reflectors?



Effect of Multiple Picocell Location
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Effect of Multiple Picocell Location
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Effect of Multiple Picocell Location

picocell

LOS is blocked
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Effect of Multiple Picocell Location

picocell

LOS is blocked

client 1
client 2

client 3 client 4
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Effect of Multiple Picocell Location

picocell

LOS is blocked
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client 3 client 4
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Effect of Multiple Picocell Location

picocell 1

LOS is blocked

client 1
client 2

client 3 client 4

picocell 2
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Effect of Multiple Picocell Location

picocell 1

LOS is blocked

client 1
client 2

client 3 client 4

picocell 2
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Brute-Force Search?

strong reflector 4

Link: 7

No Link: 8 
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Brute-Force Search?

strong reflector 4

Link: 8

No Link: 7 

24



Brute-Force Search?

strong reflector 4

Link: 11

No Link: 4 
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Understanding the Environment

2.35 m7.5 m

mmWave

transceiver

7.5 m

2.35 m

Strong reflectors

How visual camera sees How mmWave device sees

Can we use visual camera input to predict 
Signal Reflection Profile (SRP)?



Our Approach

Measured SRPs

Loc N

Loc 1



Our Approach

Measured SRPs

Predicted SRPs



Challenges in Predicting SRP from Visual Data

1. Signal Reflection Profile (SRP) Prediction

❑ Different Field-of-View of visual AR device and mmWave device
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1. Signal Reflection Profile Prediction

❑ Different Field-of-View of visual AR device and mmWave device

❑ Non-linearity between visual depth image and signal reflection profile
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Challenges in Predicting SRP from Visual Data



1. Signal Reflection Profile Prediction

❑ Different Field-of-View of visual AR device and mmWave device

❑ Non-linearity between visual depth image and signal reflection profile

❑ Inaccuracy in transfer-learning to new environment
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Challenges in Predicting SRP from Visual Data



System Overview
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Different Field-of-View (FoV)
❑mmWave device has limited FoV and does not see as much as visual AR device sees
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Different Field-of-View (FoV)
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Non-Linear Relationship

Visual data and SRP shows the non-linear relationship
35



Deep Learning Base Model

https://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2

_Inverted_Residuals_CVPR_2018_paper.pdf
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Data Collection Platform

❑ Center Freq. 24 GHz

❑ Bandwidth: 1 GHz

❑ AR Google Tango 

❑ 1.1 million data samples

❑ 16 diverse environments

❑ 280 K for training

❑ 812 K for testing
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Base Model Results

~ 1.5 dB

~ 4.2 dB

Average median error is around 1.5 dB across all environments
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Inaccurate Transfer-Learning

10 dB

30 dB

Median error difference is greater than 10 dB!
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Semantic Aware Design
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Semantic Aware Design
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Semantic Aware Design
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Semantic Aware Design
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Semantic Aware Design
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Semantic Aware Design
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SRP Improvement
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SRP Improvement
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13 dB



SRP Improvement

1.5 dB

Semantic aware model reduces SRP from 13 dB to 1.5 dB
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Picocell Deployment

❑ Random and common-sense deployment doesn’t cover properly

Common-sense Random
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Deployment Algorithm

Ray-tracing

Simulation

Tx Pos. 1

Tx Pos. 2

Tx Pos. N

Tx Pos. K

SRPs

SRPs

SRPs
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Noise

SRP 

Prediction

Model

Noise

Picocell Location 1

Picocell Location 2

Picocell Location K

Picocell Location Q

Q available picocells
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Coverage Map

Common-Sense
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Coverage Map

Common-Sense Argus (ours)

Received signal strength is higher for most client locations in Argus52



Conclusion

❑ Argus accurately predicts SRP across diverse environments

❑ Semantic-aware model facilitates transfer-learning

❑ Accurate SRP prediction enables optimal picocell deployment

Thank you!
For more results, please check:

https://cse.sc.edu/~hregmi/Argus.pdf

For Questions: hregmi@email.sc.edu
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