Argus: Predictable Millimeter-Wave Picocells with Vision and Learning Augmentation

Hem Regmi and Sanjib Sur

ACM SIGMETRICS/IFIP PERFORMANCE 2022 Mumbai, India June 6-10, 2022

College of Engineering and Computing

Outline

Picocell fundamentals
 Challenges with picocells and our approach
 Deep learning design
 Semantic aware design
 Experimental results
 Conclusion

Millimeter-wave (30 GHz to 300 GHz)

Wavelength: 10 mm to 1 mm

Need of Millimeter-wave

Forecast of the 5G connections in North America from 2019 to 2025 (millions of connections)

5

10-12 m range
Small size
Low power

Possible Ways for Link Connectivity Line-of-Sight (LOS) Path no blockage picocell client

Possible Ways for Link Connectivity

client

Correct Non-Line-of-Sight (NLOS) Path

blockage

strong reflector

((•)))

picocell

How can we deploy picocells correctly based on surrounding reflectors?

Effect of Multiple Picocell Location

Effect of Multiple Picocell Location

strong reflector 3

strong reflector 4

Effect of Multiple Picocell Location

LOS is blocked

strong reflector 4

Understanding the Environment

How visual camera sees

How mmWave device sees

Can we use visual camera input to predict Signal Reflection Profile (SRP)?

Our Approach

Our Approach

Challenges in Predicting SRP from Visual Data

1. Signal Reflection Profile (SRP) Prediction

□ Different Field-of-View of visual AR device and mmWave device

Challenges in Predicting SRP from Visual Data

1. Signal Reflection Profile Prediction

Different Field-of-View of visual AR device and mmWave device
 Non-linearity between visual depth image and signal reflection profile

Challenges in Predicting SRP from Visual Data

1. Signal Reflection Profile Prediction

Different Field-of-View of visual AR device and mmWave device
 Non-linearity between visual depth image and signal reflection profile
 Inaccuracy in transfer-learning to new environment

System Overview

Different Field-of-View (FoV)

ImmWave device has limited FoV and does not see as much as visual AR device sees

Different Field-of-View (FoV)

Non-Linear Relationship

Visual data and SRP shows the non-linear relationship

Deep Learning Base Model

https://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2 _Inverted_Residuals_CVPR_2018_paper.pdf

Data Collection Platform

Center Freq. 24 GHz
Bandwidth: 1 GHz
AR Google Tango

1.1 million data samples
16 diverse environments
280 K for training
812 K for testing

Base Model Results

SRP Improvement

SRP Improvement

47

Picocell Deployment

Y-axis

□ Random and common-sense deployment doesn't cover properly

Random

Deployment Algorithm

Common-Sense

Coverage Map

Common-Sense

Argus (ours)

52 Received signal strength is higher for most client locations in Argus

Conclusion

- □ Argus accurately **predicts SRP** across diverse **environments**
- Semantic-aware model facilitates transfer-learning
- □ Accurate SRP prediction enables optimal picocell deployment

Thank you!

For more results, please check: <u>https://cse.sc.edu/~hregmi/Argus.pdf</u>

For Questions: hregmi@email.sc.edu