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Figure 1: (a) Data collection setup with two mmWave devices and an RGB-D camera; (b) Example of an individual performing lunges in front
of mmWave devices; (c) Reflected signal from one frame of exercise; (d) Classification network architecture.

ABSTRACT
At-home exercise monitoring is vital to applications like rehabilita-
tive care and physical therapy. In this work, we use millimeter-wave
signal reflections to assess the exercise, where we classify the ex-
ercise type by designing a supervised deep learning model, and
estimate the number of repetitions by leveraging phase information
embedded in the reflections.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting; • Computing methodologies → Neural networks.
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1 INTRODUCTION
Advances in deep learning frameworks and improvements in sensing
devices have enabled smarter at-home personal documentation, such
as tracking general activities, recording vital signs without wearables,
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and detecting falls of elderly individuals. Researchers have used a
variety of techniques to build such systems, e.g., optical cameras,
wearable sensors, and wireless signals. But the use of RGB cameras
for documentation in personal spaces could be privacy-invasive, and
the performance largely depends on optimal lighting conditions.
Moreover, the use of wearable sensors could be inconvenient since
users may be required to wear multiple sensors for detailed data
recording. Approaches utilizing Wi-Fi signals operate at low carrier
frequency with low bandwidth; so, they are unable to detect small
movements.

Thus, we propose to use millimeter-wave (mmWave) wireless
signals from 5G-and-beyond smart devices, which have the ability
to track human limb movements at finer granularity. Our objective in
this work is two-fold: (1) Classify the type of exercise an individual
is performing, and (2) Provide a set of temporal assessments of the
exercise, such as cycle count, cycle length, rest period, etc. Having
the ability to classify activity and offer feedback enables applications
like remote physical therapy and remote personal training. However,
mmWave signals are not readily amenable to generate images, for
two reasons: (1) high susceptibility to specular reflections, i.e., the
reflected mmWave signals from a body are not entirely directed back
at the receiver, and (2) low spatial resolutions due to the use of only
a few antennas in commodity devices. Previous works on human
activity recognition with mmWave [1, 2] have focused on construct-
ing human silhouettes or skeletons, which, similar to vision-based
approaches, raises privacy concerns for users. Others [3, 4] seek
to use point cloud data generated from mmWave signals to recog-
nize activity. These approaches require extensive signal processing
and generate coarse point clouds which do not contain sufficient
information for detailed activity assessment. Inspired by previous
works using Wi-Fi [5], our key intuition is that similar patterns of
movement will produce comparable changes in mmWave reflection
data, i.e., we can use the reflected signal directly for our activity
monitoring task. We exploit spatial and temporal information in the
reflected signals to train a deep learning model for exercise classifi-
cation, and we leverage the signals’ phase information to count the
number of repetitions.
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2 SYSTEM DESIGN AND RESULTS
To achieve spatial resolutions along both the vertical and horizon-
tal directions, we use two millimeter-wave transceivers with the
receiving antennas rotated vertically and horizontally. There are four
receiving antennas on each of the transceivers and one active trans-
mitting antenna. A co-located RGB-D camera captures ground truth
depth images and key joint positions (see Figure 1[a]). The mmWave
transceiver uses FMCW chirps with linear frequency sweep along
a bandwidth of ≈1.8 GHz. Since the mmWave transceivers cap-
ture chirps at a much higher frame rate than the depth sensor, we
take the median over all chirps within a frame to keep the frame
rate consistent. We process the mmWave data by applying a 256
point FFT, deconstructing the signal into its component frequencies,
corresponding to reflections from objects at different ranges. The
transceivers capture reflections from a very large range; so, we prune
the reflections to discard information about ranges beyond the user’s
depth, accentuating the exercise signature.

Exercise Classification: We leverage the reflections received
by multiple antennas and use them in a customized Convolutional
Neural Network (CNN) with Long Short-Term Memory (LSTM)
classifier to predict the exercise. The core purpose of CNN is to
extract relevant features from the input data using sliding convolu-
tional filters that capture the spatial variations in signals, and the
core purpose of LSTM to learn from unique temporal changes for
different exercises. At a high level, the network takes mmWave re-
flections received by 8 antennas as input and outputs the exercise
type. The input data is folded so we can apply convolutions to each
frame independently, and after applying several convolutions with
ReLU activations on each frame, we unfold the data to restore its
original sequence structure and flatten it to acquire a feature vector
for each frame. We use LSTM layers as gated recurrent components
in our network design to capture the temporal changes inherent to
each activity. Following the LSTM, we use one fully connected layer
followed by a softmax to assign a probability for each of the 18 exer-
cises. The network outputs the exercise with the highest probability
as its predicted class. Figure 1(d) shows our network architecture.

Identifying Repetitions within Exercise: We use the difference
in phases of the received signal between two receiving antennas to
identify the spatio-temporal repetitions in the exercise. Intuitively,
the limb and torso movements during activity cause fast and frequent
variations of phase while resting periods will cause much slower
variation in phase (see Figure 2[b] for lunges exercise).

The reflected mmWave signals have a large bandwidth, but not
all these frequencies are strongly reflected by the human body. The
weakly reflected components show low variance in phase across
the full exercise routine. Thus, we compute variance across all the
frames for each of the existing frequencies, and empirically set a
threshold of 80% of the maximum variance to filter out the weakly
reflected components. To locate the start and end of an exercise
repetition, we use a sliding window of 1.2 seconds and 90% overlap
in the filtered signal to compute a series of variances across time.
To reflect the relative importance between the range bins, we use
a weighted summation of the variances for the multiple range bins,
where the weights are proportional to the reflection strength in the
corresponding range bin.
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Figure 2: (a) Classification accuracy for different train/test split; (b)
Phase difference; (c) Euclidean distance of knee joints; (d) Variance
of phase difference.

Preliminary Results: We collect 460 data samples of one indi-
vidual performing 18 exercises, such as forward lunges, push-ups,
lateral arm raises, squats, etc. We train the CNN-LSTM and find
the average prediction accuracy on the test set when using different
train/test ratios. We use 20% of the training data for validation, and
keep all hyperparameters consistent across all experiments. Figure
2(a) shows that our classification network is able to achieve 82%
prediction accuracy on the test set, using 331 total data samples for
training. This validates our intuition that different human activities
produce sufficiently distinct patterns in mmWave signals for deep
learning models to classify activity. Figure 2(d) shows the phase
variance for a lunge exercise, which conforms with the ground truth
repetitions estimated by the RGB-D camera (Figure 2[c]).

3 CONCLUSION AND FUTURE WORKS
In this work, we propose and preliminarily evaluate a mmWave sig-
nal based exercise classification and cycle estimation system. The
system does not invade privacy like a camera-based approach and
provides finer-grained exercise information. In the future, we plan
to extend this work to classify between subjects, evaluate the per-
formance with different input signal representations, such as range-
angle and range-doppler responses, estimate duration, tempo, etc.,
in exercises and deploy and evaluate in practical at-home settings.
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