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Figure 1: (a) SSCense uses a millimeter-wave (mmWave) transceiver with 3 transmitters and 4 receivers to estimate the Soluble Sugar Content
(SSC) of fruits; (b) Top-down view of data collection setup for controlled experiments with sugar solutions inside a container; (c–d) Fruits are
positioned in front of the transceiver, and reflected signals from multiple antenna pairs are collected. The extracted features from these signals
are fed to an estimation model for predicting SSC on a °Brix scale [1].

ABSTRACT
Soluble Sugar Content (SSC) of a fruit is indicative of its ripeness
and is used in the fruit industry for quality control in the production
chain. We present the design and implementation of SSCense, a
low-cost, non-destructive system to estimate a fruit’s SSC using the
millimeter-wave wireless technology in 5G-and-beyond devices.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools.
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1 INTRODUCTION
Fruit products go through a long production chain that involves farm-
ers, distributors, retailers, and consumers. To preserve the quality
at each level, fruits undergo drying, cooling, freezing, etc.; each
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entails methods to analyze and classify the product quality, such
as ripeness. Controlling the ripeness of fruits in this process pre-
vents fruit waste, allow fruit to ripen to the optimal harvesting stage,
help distributors manage and schedule shipping and storage times,
and aid consumers in purchasing high-quality groceries. Soluble
Sugar Content (SSC) is one of the key characteristics that directly
determines the fruit ripeness. Fruits consist of three major soluble
sugars: Glucose, Fructose, and Sucrose. The biochemical changes
during ripening cause the degradation of polysaccharides and starch,
leading to the accumulation of soluble sugars. So, tracking SSC at
each step of the production chain can reveal the product’s ripeness.

Traditionally, SSC is determined using either high performance
liquid chromatography or gas chromatography-mass spectrometry,
or Brix measurement where 1◦ Brix (Bx) refers to 1 gram of su-
crose in 100 grams of aqueous solution [2]. These methods subject
fruits to laborious and destructive processing, and the assessment
must be done by professional analysts with sophisticated equip-
ment. Recently suggested approaches, such as NIR and UV-Visible
spectroscopy, are non-destructive but require specialized, expensive
hardware and a professional to calibrate and work with these devices.

We propose SSCense, a low-cost, non-destructive means for es-
timating the SSC in fruits using the millimeter-wave (mmWave)
wireless technology in 5G-and-beyond smart devices. SSCense relies
on a fundamental idea that the strength of the signals reflected off
objects depends on the intrinsic characteristics of their material, and
varying levels of the SSC change these intrinsic characteristics and
affect the reflected signals [3]. SSCense employs a multi-antenna
mmWave transceiver that touches the fruit (Fig. 1[c]), transmits and
receives mmWave signals bounced off of the fruit, processes the
reflected signals from all the antennas to extract features, and feeds
them to a machine learning model to predict the SSC in the fruit.

We build the SSC estimation model using reflection data from
three sugar solutions, glucose, fructose, and sucrose and evaluate it
on apples, oranges, and kiwis. Our preliminary experiments show
that SSCense can estimate the SSC with an average error of less than
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Figure 2: (a) Measured °Bx of glucose, fructose, and sucrose so-
lutions; (b) The RSS from Rx4 decreases as SSC increases; (c) But
no relation found between RSS from Rx3 and SSC; (d) Regression
models developed using data samples from three sugar solutions.

0.58 ◦Bx for controlled sugar solutions and less than 1.43 ◦Bx for
real fruits. Moreover, we show that a prior approach using a single
antenna for estimating the SSC [1] performs poorly in a practical
environment, and our multi-antenna mmWave transceiver based
design promises hand-held estimation of SSC in fruits.

2 SSCENSE SYSTEM DESIGN
We briefly describe the Friis Transmission model that demonstrates
the relationship between mmWave Received Signal Strength (RSS)
and materials’ physical properties, and then show that SSC changes
the properties of materials and thus affects the RSS. SSCense capi-
talizes the relationship between SSC and RSS to estimate SSC.

Reflected Signal and Material Properties: The Friis Transmis-
sion model can be used to determine the signal power at a receiving
antenna for a signal transmission [3]: 𝐴𝑟 /𝐴𝑡 = 𝐺𝑟𝐺𝑡 ·𝜆/(4𝜋 (2𝑑)) ·𝑟 ,
where 𝐴𝑟 and 𝐴𝑡 denote the amplitude of the receiving and transmit-
ting signals, respectively, 2𝑑 is the round-trip propagation distance,
𝐺𝑡 and 𝐺𝑟 are the Tx and Rx gains, 𝜆 is the carrier wavelength, and
𝑟 is the reflection coefficient of the target material, which is related
to its permittivity [3]. If 𝐴𝑡 , 𝐺𝑡 , 𝐺𝑟 , 𝑑, and 𝜆 remain constant, then
the received power, 𝐴𝑟 , relies only on the reflection coefficient or
permittivity of the target material.

Estimating SSC Using mmWave Reflection: When SSC in-
creases in an aqueous solution, the number of free water molecules
drops, and the permittivity of the solution decreases [1]; so, the
RSS of the reflection from that solution should also decrease. To
observe the relationship between RSS and permittivity, we conduct
controlled experiments by varying the sugar content inside a con-
tainer with water, placing it in front of the mmWave device (Fig.
1[b]), capturing the mmWave signal reflection, and measuring the
true SSC using a digital refractometer. Figs. 2(a–b) show the change
in ◦Bx levels for different amount of sugars, and change in RSS for
different ◦Bx levels observed from one pair of transmit and receive
antennas: This result conforms with the theoretical model. However,
not all antenna pairs show consistent decrease in RSS: For the same

Tx antenna, the relation between RSS from a different Rx antenna
and ◦Bx level does not match the theoretical model (Fig. 2[c]). This
is due to the spacing between the antennas and the curved shape of
the objects, the reflected signals captured from different antennas
could be distinct and vary in strength. So, relying on a single antenna
pair, as in a previous study [1], is not suitable for SSC estimation.

To this end, SSCense proposes to use multiple Tx and Rx pairs
to estimate SSC. The key idea is intuitive: Instead of selecting any
one of the antenna pair, which may not conform with the theoretical
model, we train a machine learning model with hundreds of data
samples to learn the pattern between reflected signals and ◦Bx levels.
Then, at run-time, it can predict the true ◦Bx levels from the reflected
signals. We use a 77-81 GHz mmWave device (TI IWR1443BOOST)
(Fig. 1[a]) to capture the multi-antenna reflections off the sugar
solutions, extract features from the data to focus on the peak zone of
the reflected signals that correspond to where the solution is placed,
and use this pruned data to build a learning model that can predict
the SSC. The mmWave transceiver consists of 3 Tx and 4 Rx that
can measure the reflections simultaneously from 12 (3 × 4) virtual
channels. For ground truth ◦Bx data collection, we use an industry-
standard digital refractometer, Atago PAL-Patissier Refractometer.

3 PRELIMINARY RESULTS
We test three machine learning models: Linear Regression (LR),
Random Forest Regression (RF), and Support Vector Regression
(SVR) with a linear kernel to build our SSC estimating model, and
use RMSE between ground truth and prediction to evaluate them. Fig.
2(d) shows that our system achieves the best result using LR, which
can be attributed to the linear relationship between the features (RSS)
and target variables (SSC), and the model automatically selects
antenna pairs with the best linear relationship. Our LR model can
predict the SSC with an average error of 0.54 ◦Bx, 0.49 ◦Bx, and
0.58 ◦Bx for glucose, fructose, and sucrose solutions, respectively.
Finally, we evaluate the model on apples, kiwis, and oranges, with
true ◦Bx levels ranging from 10 to 15.8, and observe that SSCense
estimates SSC in these fruits with an average error of 1.43 ◦Bx.

4 FUTURE WORKS AND CONCLUSION
We designed SSCense, a low-cost, non-destructive system for pre-
dicting SSC in fruits. SSCense achieves an acceptable error for
predicting SSC using a multi-antenna mmWave transceiver. Next,
we plan to customize the machine learning model, fine-tune and eval-
uate it on more fruits with different shapes and textures, and build a
real-time, hand-held SSC estimator on 5G mmWave smartphones.
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