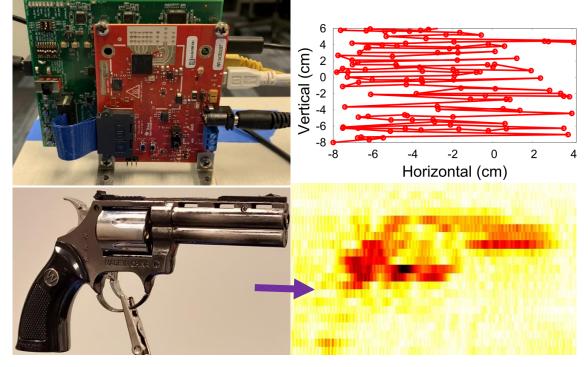
ZigZagCam: Pushing the Limits of **U**of **South Carolina** Hand-held MmWave Imaging


ZigZagCam: Objective & Challenges

Objective

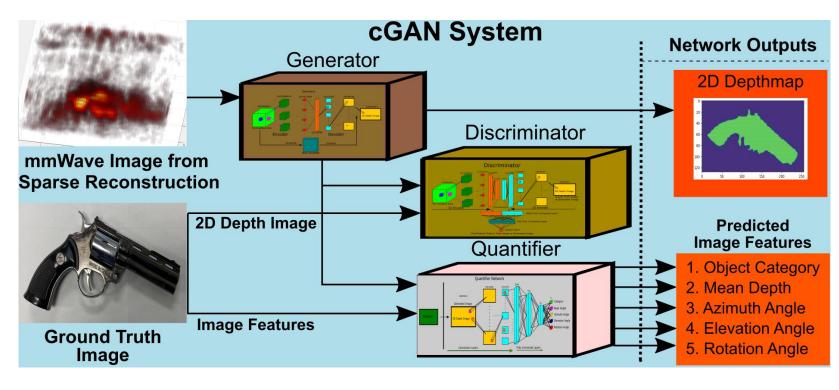
Bring hand-held mmWave imaging which gives human perceptible 2D shapes, **3D orientation** for objects, even in **out of line-of-sight**

Challenge 1 – Imaging Issues

- Samples from **manual scanning** do not fall under uniform, ideal grid points
- There is **localized sparsity** due to nonuniform scanning

Challenge 2 – Specularity of Object

- **Specular reflectivity** due to improper orientation of object *w.r.t* scan plane
- Specularity only allows for a **partial human imperceptible shape reconstruction**


Reconstruction using Machine Learning

Recovering human perceptible 2D shapes using cGAN

- Conditional Generative Adversarial Networks (cGAN) uses Generator and **Discriminator** with **Custom Loss Function** to train Generator
- Post Training, Generator takes 3D mmWave heatmap and generates **2D shape**

3D Features with Quantifier

- Quantifier uses 2D shape to compute **Depth** and **Orientation**
- Orientation includes **Rotation**, **Azimuth**, and **Elevation angles**

Hem Regmi, Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi

Motion Error Correction & Sparse Sample Recovery

Motion Error Correction

The back-scattered samples are deviated away from the linear grid. A phase correction factor:

 $\Phi = \exp(jk2(d_{\mu} - d_{s}))$

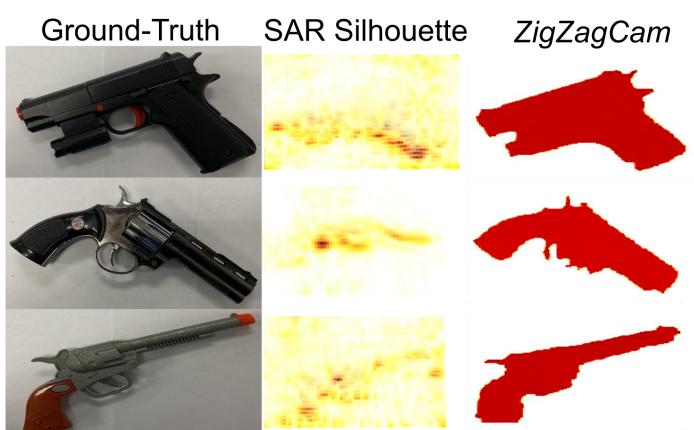
is multiplied to the deviated samples to estimate the equivalent samples on the closest point in the linear grid

Sparse Sample Recovery

The localized sparsity in measurements does not allow all samples to be estimated from motion error correction. A **Compressed Sensing (CS) algorithm** is exploited to estimate the missing samples

Preliminary Results and Conclusion

2D Shape Reconstruction


- Rough **silhouette** from motion error correction and sparse recovery
- 3D mmWave test samples were fed to Generator, to get 2D shapes
- More than 90% similarity score to ground-truth shapes

3D Features Prediction

less than 5% error for 90th percentile of data for **Quantifier**

Conclusion and Future Works

- ZigZagCam brings imaging functionality to mmWave enabled mobile devices
- Machine Learning allows precise reconstruction of 2D shape and 3D features

