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ABSTRACT
Millimeter-wave (mmWave) technology is emerging as the
most promising solution to meet the multi-fold demand in-
crease for mobile data. Very short wavelength, high direc-
tionality, together with sensitivity to rampant blockages and
mobility, however, render state-of-the-art mmWave technolo-
gies unsuitable for ubiquitous wireless coverage. In this work,
we design and implement UbiG — a mmWave wireless access
network — that can deliver ubiquitous gigabits per second
wireless access consistently to the commercial-off-the-shelf
IEEE 802.11ad devices. UbiG has two key design components:
(1) a fast probing based beam alignment algorithm that can
identify the best beam consistently with guaranteed latency
in a mmWave link, and the algorithm scales well even with
a very large number of beams; and (2) an infrastructure-side
predictive ranking based fast access point switching algorithm
to ensure seamless gigabits per second connectivity under
mobility and blockage in a dense mmWave deployment. Our
IEEE 802.11ad testbed experiments show that UbiG performs
close to an “Oracle" solution that instantaneously knows the
best beam and access point for gigabits per second data trans-
mission to users.
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1 INTRODUCTION
The skyrocketing global demand for mobile data has created
a significant push to both academia and industry to pursue
new wireless technologies beyond existing LTE and Wi-Fi.
Millimeter-wave (mmWave) is emerging as the most promis-
ing solution [10, 33, 44] to meet the nearly 100× traffic surge
in the next five years [6]. mmWave technology promises multi-
Gbps throughput by operating on the unlicensed multi-GHz
bandwidth — several orders of magnitude wider than LTE and
Wi-Fi combined. Multiple standardization efforts [4, 16, 17]
and Commercial-Off-The-Shelf (COTS) products operating on
the unlicensed 60 GHz mmWave spectrum already offer upto
7 Gbps of wireless bit-rate. Further, recent research advance-
ments of new mmWave systems [2, 13, 41, 43, 53] and large-
scale field-trials by popular network operators and vendors
[50] led mmWave to be recommended as a key technology for
the 5G mobile broadband [10, 11, 44].

mmWave signals, unfortunately, suffer from severe path-loss
due to high operating frequency. So, mmWave devices need to
use phased-array antennas to focus their Radio Frequency (RF)
energy through narrow directional beams and compensate the
attenuation loss. Aligning the beams between the Access Point
(AP) and the user devices, however, remains a fundamental
challenge due to the high channel dynamics under device
mobility and obstacle blockage and due to the large number of
possible beam directions in next-generation mmWave devices
[2, 41–43, 54].
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Figure 1: Our 60 GHz experimental platform: (𝑎) A dual-band IEEE 802.11ad/ac AP with a 4×8 60 GHz phased-array
antenna. (𝑏) Same phased-array antenna mounted on a laptop. Enabling ubiquitous Gbps wireless access: (𝑐) UbiG aligns
beams between AP and user devices with few probes and ensures Gbps access via switching data connection between
APs proactively during blockages and mobility.

IEEE 802.11ad-compliant solutions [16] employ a multi-level
scan to align the beams. Still, this approach can take hundreds
of milliseconds latency to find the best alignment [41, 54],
even for a pair of nodes with a small number of 𝑁 = 64
beams [15, 42, 54]. During continuous mobility, furthermore,
the scan may be invoked persistently, exacerbating the latency.
Recent compressed sensing solutions [23, 30, 31] promise to
scale well by requiring only O(𝐾log𝑁) measurements. Here,
𝐾 is the number of dominant channel paths and it is typi-
cally bounded by 2 or 3 [3, 32, 34, 39, 42, 43, 49]. These solu-
tions, unfortunately, do not work with the COTS mmWave
devices because they require phase-coherence across measure-
ments [23, 30, 31] or need customized phased-array anten-
nas [2, 15]. Although recent non-coherent design is shown to
work in commodity platforms [36], it has limitations to align
the best beam under multipath mmWave channel. A fixed
overhead beam alignment protocol [43] allows to infer the
best beam with fast probing, but works for quasi-stationary
links only. Finally, out-of-band solutions (e.g., [26, 41]) require
additional MIMO Wi-Fi radios to identify the best beam; but
the solutions do not scale well for systems with large number
of mmWave beams and limited Wi-Fi antennas.

Even if an “Oracle” solution can quickly align the best beam,
it does not guarantee ubiquitous Gbps connectivity to an AP
during blockage. Identifying the best unblocked AP among
multiple candidates, each with up to hundreds of beams, can
take the order of seconds and easily interrupt the upper layer
protocols [36].

In this work, we propose UbiG — a Ubiquitous Gbps wireless
access network solution — that promises to overcome the
limitations of the existing mmWave network designs. UbiG
sets three key design goals:

(1) Scalable beam alignment: UbiG aims to align the beam
between the mmWave devices at a latency that is independent
of the size of the phased-array antennas. This way it can bound
the link recovery latency under various channel dynamics and

even for a very large number of beam directions.

(2) Ubiquitous Gbps connectivity: UbiG seeks to maintain Gbps
connectivity even under blockage or mobility. Beam alignment
alone may not help when a mmWave link’s Line-Of-Sight
(LOS) is blocked. Ultra-dense AP deployment and fast AP
switching are required to sustain the Gbps connectivity.

(3) Low hardware cost: UbiG needs to implement the algo-
rithms on standard-compliant COTS mmWave hardwares
which may not provide coherent PHY layer information or
only allows for coarse-grained phase control over the phased-
array antenna elements.

UbiG introduces two key design components to meet the above
goals: (1) a fast beam alignment algorithm that can align the
best beam between an AP and a user device with a very few
beam probing; (2) a rapid and scalable AP switching algorithm
which introduces a concept of predictive “AP ranking" that
can steer and connect to the best alternative AP without going
through the traditional slow discovery. Our design works
with existing cheap COTS IEEE 802.11ad devices and scales
well with future platforms that may have larger phased-array
antennas. Figure 1(𝑐) shows the design overview of UbiG.

UbiG’s fast beam alignment algorithm is built upon a simple
observation — while the channel gain and phase change with
steering different beam directions, the underlying physical
paths along which the signals travel from transmitter to re-
ceiver remain the same. As long as a transmitter can extract
the properties (complex gain and directionality) of the paths,
it can align the best beam without scanning through the entire
space. UbiG judiciously selects a fixed number of beams to
probe and then employs a space-time analysis on the channel
measurement of the beams to extract the properties of all dom-
inating paths. The number of probings under this approach is
independent of the size of the phased-array antenna and thus
the number of beam directions 𝑁 . This space-time analysis
allows UbiG to break away from existing sparse-signal recov-
ery mechanisms where the measurement complexity can not
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Figure 2: Radiation pattern of two example beams in our
platform. Signal strength is in dB.

be reduced below O(𝐾log𝑁) [15, 23, 30, 31].

Channel measurements from COTS mmWave platforms, how-
ever, are phase-incoherent [36, 52] due to the lack of carrier
phase tracking across different packets. UbiG is able to over-
come the limitation based on an observation — even if the
phase of channel measurement across multiple probes are in-
coherent, the relative phase of the channel within a single
probe are still coherent. Because the relative phase only de-
pend on the distance difference among paths, it remains the
same across consecutive channel measurements. UbiG lever-
ages a first-arrival-path phase calibration and joint estimation
of all dominating paths to overcome the limitation.

UbiG, in addition, maintains Gbps connectivity upon blockage
and mobility by harnessing the cooperation among densely
deployed APs. These APs are tightly coordinated through a
central controller and can share a high-speed Ethernet or fixed-
beam mmWave backhaul [18]. Such multi-AP architecture has
been widely deployed in enterprise Wi-Fi networks, but the
high directionality of mmWave brings new challenges even for
a simple problem — “which AP should serve a user device?”
Instead of an exhaustive probing of all beams on all APs,
UbiG can rank the APs in the user device’s vicinity using
only the current AP’s channel measurement. It achieves this
by leveraging a triangulation scheme to predict the gain and
direction of the dominating LOS path of these APs. Upon AP
ranking, UbiG uses the fast probing scheme to identify the
best AP and beam to seamlessly steer the user device without
affecting the running applications.

We have implemented and evaluated UbiG using COTS IEEE
802.11ad devices, that support 64 beams, in various static and
dynamic settings. Our experiments show that in 82% of the
settings, the SNR loss under UbiG’s fast beam alignment is
less than 1.5 dB that enables near-optimal beam and bit-rate
selection. Under simulated settings, the algorithm scales well
even for a large phased-array antenna with 1024 beams. The
average SNR loss is less than 1 dB under medium to high
SNR conditions. Furthermore, UbiG’s predictive “AP ranking”

needs to probe at most 3 APs to identify the best one even in
ultra-dense mmWave network deployments; this allows for
guaranteed latency and seamless Gbps connectivity.

UbiG, in summary, makes three core contributions:

(1) We design a fast beam alignment algorithm that can align
the best beam between AP and user devices with a few probes
(c.f., Section 3); it runs in low-cost COTS hardware and scales
well even for future platforms with larger phased-array an-
tenna.

(2) We design a virtual cell architecture where UbiG’s con-
troller can rank the best APs in user’s range without probing
(c.f., Section 4); this allows for a seamless AP switch without
affecting running applications.

(3) We implement and extensively evaluate our design in
multiple realistic settings (c.f., Section 5 and 6).

2 BACKGROUND ON MMWAVE
BEAMFORMING

Millimeter-wave radios use phased-array beamforming to
focus the RF energy [14, 35]. For a 1D linear phased-array
antenna, the gain pattern of the 𝑚th beam can be expressed
as [46]:

𝐴𝑚(𝜃) =
∑︀𝑁

𝑛=1w(n,m) · e(j2𝜋ndcos𝜃/𝜆) (1)

where 𝑁 is the number of antenna elements (with uniform
separation 𝑑), and 𝜆 is the wavelength of the wireless signal.
The weights w(n,m) can be tuned to generate different beams
with diverse radiation patterns. COTS mmWave platforms typ-
ically use a 2D phased-array antenna (Figure 1(𝑎, 𝑏)) and thus
can generate radiation pattern in both azimuth and elevation
plane denoted by 𝐴𝑚(𝜃𝑎𝑧, 𝜃𝑒𝑙). Figure 2 shows the azimuth
and elevation radiation patterns of two example beams in
our IEEE 802.11ad platform. Note that, the beam patterns
are far from a perfect shape due to discrete configuration
weights [36, 41, 46, 52]. For each beam, however, the pattern
𝐴𝑚 is fixed during hardware design time and known a priori.

Since a transmitter’s signals can reach the receiver through
multiple paths, say 𝐾 , the mmWave channel created by the
𝑚th transmit beam is given by:

ℎ𝑚 =
∑︀𝐾

𝑘=1

∑︀
𝜃𝐴𝑚(𝜃) · 𝑔𝑘(𝜃𝑘) · 𝛿(𝜃 − 𝜃𝑘) (2)

where 𝑔𝑘(𝜃𝑘) denotes the complex channel gain of the 𝑘th

path towards direction 𝜃𝑘 . The gain 𝑔𝑘 equals 𝑎𝑘𝑒𝑗𝜑𝑘 for path
amplitude 𝑎𝑘 and phase 𝜑𝑘. The performance of a transmit
beam depends on its spatial alignment with the 𝐾 paths of
the mmWave channel; the alignment is captured by the Dirac
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Figure 3: Intuition behind UbiG’s fast beam alignment: (𝑎) Two beams with different radiation patterns share the same
physical paths to reach the mobile device. (𝑏)Measured channel responses (ℎ1 and ℎ2) show the arrival times of the two
strong paths under both beams. While the arrival times for both the paths remain exactly same under both beams, the
gain of the paths change due to different radiation patterns. (𝑐) Extracting 4-tuple of common paths between the two
beams. (𝑑)Mapping the 4-tuple of the paths back to channels of 𝑁 beams to predict the best.

delta function 𝛿(𝜃 − 𝜃𝑘). Each path, in practice, can traverse
both azimuth (𝜃𝑎𝑧𝑘 ) and elevation (𝜃𝑒𝑙𝑘 ) directions. Thus, the
𝑘th path can be fully characterized by a 4-tuple in the form
(𝑎𝑘, 𝜑𝑘, 𝜃

𝑎𝑧
𝑘 , 𝜃𝑒𝑙𝑘 ). Since each beam pattern 𝐴𝑚 is known, as

long as the transmitter can extract such 4-tuples for each of
the𝐾 paths in the mmWave channel, it can predict the best
beam without scanning through the entire space. This is the
fundamental principle underlying UbiG’s fast beam alignment
algorithm.

3 UBIG’S FAST BEAM ALIGNMENT
3.1 Intuition
If the mmWave transmitter and receiver can identify the best
beams with a small fixed number of channel measurements,
then they can immediately recover from beam misalignment
due to blockage and mobility, with negligible response la-
tency. To approach this ideal, UbiG leverages a key property of
the mmWave channel and phased-array beamforming. While
changing beam patterns leads to different channel measure-
ments at the receiver, the underlying physical signal paths
traversed by each of the beams remain the same and can
be well-defined by the 4-tuple (Section 2). Thus, if the trans-
mitter can extract the 4-tuple of each of the 𝐾 mmWave
paths — typically upper-bounded by 3 for mmWave channel
[3, 32, 34, 39, 42, 43, 49] — it can accurately recreate an esti-
mate of the channel for any transmit beam. The key goal of
UbiG’s beam alignment algorithm is to estimate the properties
of the 𝐾 dominant paths using a fixed number of channel

measurements.

Figure 3 illustrates how UbiG approaches the goal. Suppose the
mmWave wireless signals from the AP to the mobile device
traverse two paths. Let the corresponding 4-tuple of the sig-
nal paths be: (𝑎1, 𝜑1, 𝜃

𝑎𝑧
1 , 𝜃𝑒𝑙1 ) and (𝑎2, 𝜑2, 𝜃

𝑎𝑧
2 , 𝜃𝑒𝑙2 ). Signals

along these two paths are amplified by the two different trans-
mit beams as shown in Figure 3(𝑎). While the amplification
effects differ due to diverse beam patterns, the arrival time of
each path remains exactly the same as shown in the measured
time-domain channel of the two beams in Figure 3(𝑏). This is
because these paths traverse exactly the same distance even
when amplified by two different beams. If the AP can some-
how extract the 4-tuple of the paths as in Figure 3(𝑐), it can
recreate the channels (Figure 3(𝑑)) of the rest of the beams
following Equation (2), since the radiation pattern 𝐴𝑚 of each
beam is known.

Without prior knowledge of (𝜃𝑎𝑧1 , 𝜃𝑒𝑙1 ) and (𝜃𝑎𝑧2 , 𝜃𝑒𝑙2 ), unfor-
tunately, it is not possible to estimate the complex gain of
the paths (𝑎1, 𝜑1) and (𝑎2, 𝜑2) because measured channel is
a function of both the gain and directionality of the physi-
cal paths and the amplification by the beams towards that
direction. UbiG computationally searches through the gain
and direction of the paths to find the best 4-tuple that gen-
erates maximum matching with the measured channels. In
the next section, we describe this process mathematically and
formulate it as an L2-norm minimization problem.

3.2 Algorithm



3.2.1 Identifying Signal Paths. Let us assume, the mmWave
signals from the AP to the mobile device arrive along𝐾 dis-
tinct paths. Each path is uniquely characterized by the 4-tuple
(𝑎𝑘, 𝜑𝑘, 𝜃

𝑎𝑧
𝑘 , 𝜃𝑒𝑙𝑘 ), where 𝑘 = 1, 2, . . . ,𝐾 . Furthermore, as-

sume that the channel measurement of𝑀 beams are available
to the AP from the mobile device. Each of the channel mea-
surement of the 𝑚th beam takes the form as in Equation (2),
and the multi-GHz channel measurement captures informa-
tion of each individual mmWave path. Because each path
potentially traverses different length and arrives at the mobile
device with a slight delay; thus, the paths can be measured
separately in time-domain. Figure 3(𝑏) shows two examples
of such channel measurements. Existing COTS IEEE 802.11ad
devices, for example, allow 1.76 GHz channel measurement
through standard packet decoding pipeline [16]. A mobile de-
vice, thus, can measure each potential path with the arrival
time difference of at least 0.57 ns w.r.t., another path1.

It is non-trivial, unfortunately, to measure the complex gain
i.e., (𝑎𝑘, 𝜑𝑘) of each path without prior knowledge of the
directions (𝜃𝑎𝑧𝑘 , 𝜃𝑒𝑙𝑘 ). This is because the channel measurement
of the 𝑚th beam captures information about the gain of the
path convoluted with the complex gain of the beam pattern
(Equation (2)). Although the radiation pattern of each beam
is known and fixed a priori, the actual beam gain used to
amplify the path depends on the unknown direction of the
path, i.e., (𝜃𝑎𝑧𝑘 , 𝜃𝑒𝑙𝑘 ). So, how do we extract the 4-tuple of the
paths? The key observation is that the 4-tuple of the signal
paths remain the same even if we measure the channel from
other beams. The only thing that changes is the amplification
gain of that path due to different radiation patterns. Thus, the
contribution of the𝑚th beam on the 𝑘th path can be expressed
as a simple amplification model:

𝑃(𝑚,𝑘) = 𝐴𝑚(𝜃𝑎𝑧𝑘 , 𝜃𝑒𝑙𝑘 ) · 𝑎𝑘𝑒𝑗𝜑𝑘 (3)

On the other hand, assume that the measured response of the
𝑘th path from the measured channel of 𝑚th beam is given
by 𝑃 𝑐

(𝑚,𝑘) (e.g., one single spike in the measured plot in Fig-
ure 3(𝑏)). There could be potentially many possible directions
of the path which can have similar amplitude and phase re-
sponse after amplification by the beam pattern, however. UbiG
leverages channel measurements from a few additional beams
that amplify the same physical paths. Suppose the channel
measurements from 𝑀 beams are available at the AP-side.
Then the 4-tuple of the 𝑘th path can be extracted from the
optimization:

1Thus, as long as two dominating paths have length difference equal to the
span of human palm (∼17 cm), they can be measured separately.

{𝑎𝑘, 𝜑𝑘, 𝜃
𝑎𝑧
𝑘 , 𝜃𝑒𝑙𝑘 }* = argmin

{𝑎𝑘,𝜑𝑘,𝜃𝑎𝑧
𝑘 ,𝜃𝑒𝑙

𝑘 }
||{𝑃(𝑚,𝑘) − 𝑃 𝑐

(𝑚,𝑘)}
𝑀
𝑚=1||2

s.t.,− 𝜋 ≤ 𝜑𝑘 ≤ 𝜋, 0 < 𝑎𝑘 ≤
max|𝑃 𝑐

(𝑚,𝑘)|
min|𝐴𝑚|

∀𝑚 ∈ [1,𝑀 ]

(4)

where the bound on the path phase and amplitude are fixed
during the optimization solver time. The upper bound on the
amplitude 𝑎𝑘 is determined based on the ratio between the
measured amplitude and the absolute normalized minimum
strength of the 𝑚th beam.

The above optimization problem, however, is non-convex and
constrained over the discrete grid of directions (𝜃𝑎𝑧𝑘 , 𝜃𝑒𝑙𝑘 ). Be-
cause, in practice, 𝐴𝑚(𝜃𝑎𝑧, 𝜃𝑒𝑙) for each beam can only be
measured with finite resolution on the azimuth and eleva-
tion angle2. To solve this optimization problem, we leverage a
variant of the genetic algorithm [12] with mixed integer con-
straints. A well known problem with the non-convex optimiza-
tion solver, however, is the issue of local minima convergence.
We overcome this issue by applying a random variable initial-
ization and multiple seed generation. The above optimization
runs for each of the𝐾 paths. In practice,𝐾 is bounded since
mmWave wireless channel is typically sparse containing only
2 or 3 dominating paths [3, 32, 34, 39, 42, 43, 49]. Once the
4-tuple of all the𝐾 paths are extracted, UbiG can leverage the
channel model in Equation (2) to predict the performance of
each individual beam.

Number of probings: The optimization formulation in Equa-
tion (4), intuitively, needs to solve for 4𝐾 unknown variables
(4 variables for each of the𝐾 paths). Thus, the optimization
needs at least 4𝐾 beams’ channel measurement, as each of the
channel may reliably measure any number of paths between
1, 2, . . . ,𝐾 . With 𝐾 set to 3, the 4𝐾 measurements really
translates to only 12, independent of the number of beam 𝑁
from a phased-array. Multiple issues such as measurement
noises, local minima convergence, and discrete grid search in
the optimization solver, however, can cause the transmitter to
align onto a sub-optimal beam choice after 4𝐾 probes. Ad-
ditional 𝛿 probings, in practice, can refine the prediction and
lead it close to optimum. We will later demonstrate through
experiments that a small 𝛿 suffices.

Choice of beam directions: A key question still remains: how
do we select the 4𝐾 beams for probing? UbiG’s optimization
module, intuitively, achieves better convergence if the mea-
sured channels are as much uncorrelated as possible. In order
to reduce the correlation, UbiG selects to probe 4𝐾 beams
with as much non-overlapping radiation pattern as possible.

2Our platform vendor only provides measurement at 5∘ resolution.



The structural similarity (SSIM) metric [47] between the 2D
beam patterns (e.g., Figure 2) is used to measure the overlap-
ping between two beam patterns. UbiG probes an additional
4𝐾 − 1 beams from the set of 𝑁 available beams that has
the lowest SSIM with the current beam. Note that, the SSIM
ranking can be computed offline and only involves a simple
table lookup operation at runtime.

3.2.2 Challenges in COTS Hardware. Applying the opti-
mization in straightforward manner on commodity platform,
however, is challenging for two reasons.

Incoherent channel measurement: The phases of the chan-
nel measurement across the 4𝐾 probes are incoherent. This is
a well-known problem in any COTS mmWave devices (e.g.,
the IEEE 802.11ad devices in Facebook’s Terragraph project
[9, 36] and our experimental platforms Figure 1(a, b), [41]).
Since the COTS platforms use cheap high frequency oscilla-
tors, tracking the carrier phase across multiple channel prob-
ing packets is infeasible. Fortunately, even if the phases of the
channel measurement across multiple probe packets are inco-
herent, the relative phases of the channel within a single probe
are still coherent, as they only depend on the length difference
between the mmWave paths and free from any hardware id-
iosyncrasies. We leverage this observation to first sanitize the
phase of the entire channel of a single probe packet using the
phase of the first-arrival-path (i.e., LOS path) and then modify
the optimization problem in Equation (4) as follows:

{𝑎𝑘, 𝜑𝑘, 𝜃
𝑎𝑧
𝑘 , 𝜃𝑒𝑙𝑘 }*|∀𝑘 = argmin||{𝑃(𝑚,𝑘) − 𝑃 𝑐

(𝑚,𝑘)}
𝑀
𝑚=1||2|∀𝑘

s.t., 𝑃(𝑚,𝑘) = 𝑃(𝑚,𝑘) · exp(−𝑗∠𝑃(𝑚,1))

& 𝑃 𝑐
(𝑚,𝑘) = 𝑃 𝑐

(𝑚,𝑘) · exp(−𝑗∠𝑃
𝑐
(𝑚,1)) ∀𝑚 ∈ [1,𝑀 ]

(5)

where 𝑃(𝑚,𝑘) and 𝑃 𝑐
(𝑚,𝑘) denote the phase calibrated mod-

eled and measured channel respectively of each 𝑘th path under
𝑚th beam calibrated against the first-arrival-path (𝑃(𝑚,1) and
𝑃 𝑐
(𝑚,1)). Since the phase of the individual paths are now depen-

dent on the phase of the LOS path, the optimization problem
can be solved by joint extraction only (denoted by |∀𝑘 in Equa-
tion (5)) of the 4-tuple of all 𝐾 paths.

A side-effect of this joint extraction is that the solution space is
biased towards the most dominating path (typically the open
LOS path). Extracting the 4-tuple of the other multi-paths,
thus, becomes challenging. We overcome this by leveraging
the core intuition from existing sparse-recovery algorithm
by orthogonal matching pursuit [5]. The key idea is to iter-
atively solve Equation (5) 𝐾 times, and after each iteration,
remove the most dominating path (i.e., estimated 𝑘th path

Algorithm 1 Channel Pruning

1: 𝑀 = 4𝐾 , Channel length: 𝜏 , Tap separation: ∆ = 3
2: Input: Measured channel h : (ℎ1, . . . , ℎ𝑀 )

3: Output: Pruned channel ĥ : (ℎ̂1, . . . , ℎ̂𝑀 )
4: H0 ← FFT(ℎ1, . . . , ℎ𝑀 )
5: foreach 𝜏𝑖 ∈ (1, . . . , 𝜏)
6: Assign ℎ′

𝑗 ← ℎ𝑗 ; ℎ′
𝑗(𝜏𝑖) = 0 ∀𝑗 ∈ [1,𝑀 ]

7: H′ ← FFT(ℎ′
1, . . . , ℎ

′
𝑀 ), 𝜌(𝜏𝑖) = |H′ ·H0

𝐻 |
8: Ascend sort 𝜌 and pick first𝐾 indices 𝜏 ′1, . . . 𝜏

′
𝐾 ensuring

|𝜏 ′𝑖 − 𝜏 ′𝑗 | ≥ ∆ ∀𝑖, 𝑗 ∈ [1,𝐾]

9: Assign ℎ̂𝑗(𝜏
′
𝑖) = ℎ𝑗(𝜏

′
𝑖) ∀𝑗 ∈ [1,𝑀 ],∀𝑖 ∈ [1,𝐾]
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Figure 4: (𝑎) Measured channel responses of two beams.
(𝑏) Output of the channel pruning Algorithm 1.

with strongest amplitude) from both model 𝑃(𝑚,𝑘) and mea-
surement 𝑃 𝑐

(𝑚,𝑘). This allows to extract the 4-tuple of all the
𝐾 paths reliably.

Extracting common paths: Still, COTS platform provides
limited channel measurement resolution due to its ADC limi-
tations. Identifying a common set of𝐾 paths from 4𝐾 beams’
measurement, thus, becomes non-trivial. This is because, a
single beam may not amplify all the𝐾 paths reliably; depend-
ing on the radiation pattern, the amplification towards certain
paths may be close to noise floor. To overcome this, UbiG first
collects the channel measurement from all 4𝐾 beams, and
then iteratively prunes the measurements as described in the
Algorithm 1. At a high level, Algorithm 1 prunes each indi-
vidual path from the measured channel of all 4𝐾 beams, and
measures the sum correlation between the original and pruned
channel. Since removing the dominating paths destroys the
measured channel, UbiG identifies𝐾 dominating paths that
on pruning show the lowest sum correlation. Figure 4 also
shows an example pruned result of the measured channel from
two different beams in our platform.



3.3 Integrating UbiG with IEEE 802.11ad
UbiG’s fast beam alignment algorithm can be integrated with
IEEE 802.11ad COTS mmWave devices seamlessly. At a very
high level, the UbiG transmitter and receiver follow the similar
beam adaptation principle as in IEEE 802.11ad [16]. A receiver
goes to quasi-omni directional mode and transmitter scans
the directions with its own narrow beam directions. Instead
of scanning all 𝑁 beams, a UbiG transmitter, however, scans
a fixed number of 4𝐾 beams and collects the feedback of
1.76 GHz channel measurement from the receiver. The provi-
sion to feed channel measurement back is already available
in IEEE 802.11ad standard-compliant devices as an optional
feature [16]. This allows the transmitter to rank all 𝑁 beams
according to their predicted performance. Finally, an addi-
tional probing on the first 𝛿3 beams in the ranked order can
align the best beam direction. The receiver can follow the
same procedure to align its own beam direction. The align-
ment algorithm can be triggered whenever there is a SNR
change of 1.5 dB which is the average SNR difference between
two MCS options in IEEE 802.11ad [16]. The entire 4𝐾 + 𝛿
search allows the standard compliant devices to align the best
beam within less than 300 𝜇𝑆 under all protocol overheads
even for a 1024 beams system. Existing COTS solution, in
contrast, will require multiple seconds to identify such best
beam alignment [15, 42, 54].

3.4 Discussions
Dominating paths colliding on same time bin: Note that,
IEEE 802.11ad devices cannot measure two dominating paths
with arrival time difference less than 0.57 ns separately. In
practice, however, the mmWave dominating paths are typ-
ically well separated in space and arrival times [34, 37, 43].
In the worst case, if collision happens — i.e., the paths arrive
within 0.57 ns — the optimization solver assumes a single path
which may potentially lead to convergence to local minima
and a wrong beam alignment. With the additional 𝛿 refine-
ment, however, this problem can still be alleviated, as we will
show in our experiments.

Feedback collection overhead: For each of the 4𝐾+𝛿 beams,
the mobile device needs to feedback the measured channel to
the AP. Current standards such as IEEE 802.11ad already in-
corporate such feedback mechanisms in their beam alignment
protocols. UbiG only needs to piggy-back the complex gains
of the𝐾 paths on a single feedback packet. Such a feedback
packet only takes less than 1𝜇𝑠 in IEEE 802.11ad.

Search overhead under multi-users: While UbiG can align
the beam with a few probes with a single user, the searching
latency will potentially grow with the number of users in
the network. The AP, however, can coordinate the multiple

3𝛿 = 8, by default.

users during probing as in [36], thus eliminating this issue.
Specification for such coordination mechanisms is unavailable
in existing standard COTS platforms [16], and we leave the
extension and implementation for our future work.

4 ENABLING UBIQUITOUS GBPS ACCESS
Efficient beam alignment between a single AP and the user
device, however, does not guarantee ubiquitous mmWave
connectivity [1, 41, 43, 48]. Rampant blockage from several
obstacles, including user’s own body in close proximity to
the device, may potentially block all the available beams. To
enable seamless mmWave connectivity, UbiG leverages co-
operation between multiple nearby APs and switch to the
unblocked one before the link suffers from a catastrophic out-
age.

Similar to the existing virtual cell architectures in enterprise
Wi-Fi networks [24, 40], UbiG leverages “thin APs" coordi-
nated by a centralized controller. UbiG’s APs, specifically,
share the same IEEE 802.11 basic service set identifier (BSSID)
and appear as one AP to user devices. So, a user device
needs to associate and authenticate with only one AP which
will then synchronize the device’s association state with all
other APs in the network. This enables the users to seam-
lessly roam among the APs without repeating the AP scan-
ning/authentication/association processes. Compared with the
conventional Wi-Fi, however, realizing seamless mmWave
connectivity introduces two key challenges.

Prohibitive AP selection latency: To select the best AP, each
nearby AP needs to first identify the best beam to the device
among tens to hundreds even thousands of beam options
[36]. AP selection latency, thus, can easily reach the order of
seconds. Even if each AP uses UbiG’s fast beam alignment, the
latency grows with AP density significantly and may disrupt
the upper layer protocols (e.g., TCP [41]).

Coarse handoff: Although the virtual cell architecture allows
for rapid switching among APs, it cannot guarantee seamless
handoff under dynamic mmWave channels. For example, if
the mmWave link between AP𝑖 and user𝑘 rapidly breaks due
to blockage, the buffered packets at AP𝑖 will be dropped, even
if user𝑘 can quickly handoff to an unblocked AP𝑗 . WGTT [40]
solves this problem by forwarding each downlink packet to
all APs within user’s vicinity. Such packet replication may
easily overload the inter-AP backhaul, considering the Gbps
per-user requirements in IEEE 802.11ad applications.

UbiG solves the above challenges by leveraging a zero-latency
AP ranking and Wi-Fi traffic offloading, as we discuss next.
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Figure 5: (𝑎) UbiG ranks group of potential APs based on the geometrical extrapolation of the dominating LOS path.
(𝑏) Extrapolating gain and directionality of LOS path from AP2 using probe packets from only AP1. (𝑐) Distribution of
predicted beam strength of AP2 and AP3.

4.1 AP Ranking
UbiG’s AP ranking algorithm allows the controller to keep
track of a small set of “good" APs, and quickly switch to the
best one before the current AP fails. This is better illustrated
with the example in Figure 5. Suppose that a user device
currently uses AP1 for data transmission, but has 𝑀 − 1
alternative APs in its vicinity. The UbiG controller can rank
the𝑀 − 1 APs without additional probing based on two key
observations:

(1) When the LOS between the AP and user device is open,
all the beams’ performance mostly depends on it. Thus, by
simply estimating the gain and direction of the dominant path,
UbiG can predict the potential link performance of an AP.

(2) The LOS dominating paths between two APs and the device
form a virtual triangle in space (Figure 5(𝑏)). This allows the
controller to geometrically estimate the gain and direction of
the dominating LOS path from the second AP without probing
it.

UbiG uses the above observations as follows. First, it leverages
the channel measurements from the fast beam alignment to
estimate the gain 𝑔1 and direction 𝜃1 of the LOS path from the
current AP1 to the user device. Then, 𝑔1 and 𝜃1 information
is further sent to the controller that uses it to extrapolate
the LOS path from the other 𝑀 − 1 APs to the user device
without probing. Specifically, from the LOS path gain 𝑔1, UbiG
estimates the distance 𝑑1 between AP1 and the device. Since,
the channel measurement already separates multiple paths,
the distance can be directly measured following the free-space
path loss model as: 𝑑1 =

√︀
𝛼/|𝑔1|. Here, 𝛼 is the transmit

power of the AP4, and |𝑔1| denotes the magnitude of the
complex gain 𝑔1. The estimated AP-user distance 𝑑1, along
with the relative distance 𝑑AP and direction 𝜃AP between APs

4𝛼 can be updated during run-time if the AP employs transmit power
adaptation.

— known a priori during network deployment time — allow
UbiG to construct a virtual triangle among AP1, AP2, and
user device (Figure 5(𝑏)). Now, the distance and relative angle
between the candidate AP2 and the user can be estimated as:

𝑑2 =
√︁
𝑑21 + 𝑑2AP − 2𝑑1𝑑APcos(𝜃′1),

𝑑2
sin(𝜃′1)

=
𝑑1

sin(𝜃′2)

where 𝜃′1 = 𝜃1 + 𝜃AP. Finally, the gain and direction of the
LOS path from the candidate AP2 to the user is:

|𝑔2| = 𝛼/𝑑22, 𝜃2 = 180∘ − 𝜃′2 − 𝜃AP

The triangle of Figure 5(𝑏), in practice, lies in 3D space since
the signal paths have two directional components (azimuth
𝜃az and elevation 𝜃el). The extension for 3D case is trivial and
hence omitted here.

The estimated gain and directionality allow the controller to
predict the dominant channel of all 𝑁 beams from AP2 to
user device following Equation (2). This further allows the
controller to create a predictive beam strength distribution
profile, denoted as 𝑃 (AP𝑚), of all APs to the user device.
Figure 5(𝑐), for example, shows the beam strength distribution
of the two APs, AP2 and AP3, predicted by simply reusing the
channel measurements from fast beam alignment at AP1. The
actual ranking 𝑅(AP𝑚) of AP𝑚 is determined based on the
average of the median and maximum predicted beam strength
as follows:

𝑅(AP𝑚) =
𝑃 (AP𝑚) +max(𝑃 (AP𝑚))

2

where 𝑃 (AP𝑚) denotes the median of 𝑃 (AP𝑚). This ranking
allows UbiG to sort the 𝑀 APs in the vicinity and keep track
of the best AP.



UbiG’s AP ranking, however, assumes that each AP has one
open LOS path to the user device. Thus, it may not be able to
achieve an absolute ranking when some LOS paths are blocked.
UbiG alleviates the potential impact by picking the first 𝑀 ′

best APs from the ranked list and estimating their performance
using the fast beam alignment (Section 3.2). Our experiments
will show that a small number of 𝑀 ′ = 3 APs can ensure
accurate AP selection, even in ultra-dense AP deployment
(Section 6). Finally, UbiG’s controller selects one of the 𝑀 ′

AP with highest SNR to serve the user device. Furthermore,
UbiG’s AP selection can be extended to consider additional
metrics such as traffic load and channel utilization.

AP switching cost: Our experiments show that AP switch-
ing latency (i.e., 𝑇sw) can be on the order of tens of ms in
our implementation. UbiG’s AP switching decision takes into
account such overhead. It switches from the current AP𝑖 to
the best AP𝑗 only if the aggregate data transmission time at
AP𝑗 and the switching latency is smaller that the transmission
time at the current AP𝑖 (𝑇AP𝑗 +𝑇sw < 𝑇AP𝑖 ). The transmission
time is calculated based on the measured or predicted bit-rate
from each AP under a unit traffic load (e.g., amount of data
that can be delivered using the lowest MCS within the typical
period that a user dwells on an AP).

4.2 Traffic Offloading
UbiG’s AP ranking and fast switching, unfortunately, may
not guarantee robust connectivity under certain cases where
all APs in a device’s vicinity are blocked (e.g., the device’s
phased-array antenna is covered by user’s hand). In addition,
even if UbiG can identify high-throughput APs in a device’s
range, the current AP may host pending packets for the user
device which may be dropped upon blockage. Inspired by pre-
vious work [41] and the session transfer mechanism in IEEE
802.11ad [16], UbiG leverages multi-band chipsets’ capability,
and proactively switches to the more robust Wi-Fi upon de-
tecting a blockage.

Interface switching: Existing work [41] requires periodic
probing at Wi-Fi to identify 60 GHz blockage. We argue that
this approach has limitations to scale in ultra-dense AP deploy-
ments where an AP may serve more than 100 devices. Differ-
ently from [41], UbiG’s interface switching relies solely on 60
GHz channel measurements to proactively identify blockages
before 60 GHz link breaks. Our extensive measurements have
shown that when LOS path gets blocked, 60 GHz link is very
likely to break, especially when strong reflectors are unavail-
able or far away. This observation echoes previous field tests
[41]. UbiG extracts the LOS path using channel measurements
(i.e., LOS path is the first tap in Figure 3), and switches to
Wi-Fi if its channel amplitude is below a predefined threshold.
In our implementation, interface switching only takes 1.5 to

2 ms and does not affect the application (e.g., running over
TCP) performance.

4.3 Discussions
Network deployment density:While existing enterprise Wi-
Fi deployments are already dense (e.g., 1 AP per 10 m [41]),
we expect future mmWave deployments will be even denser.
The exact density requirement is still an open question at
mmWave domain and depends on various factors (e.g., net-
work deployer’s incentives and management overhead), and
we leave the investigation as future work.

AP channelization: UbiG’s virtual cell architecture requires
all APs to be configured on the same channel. Single channel
configuration prevents channel scanning overhead and has
been shown to allow for seamless handoffs in Wi-Fi [24].
Due to its inherently better spatial reuse [28], directional
mmWave links suffer less from interference than Wi-Fi, even
under dense deployments. We leave the study of interference
management as future work.

5 IMPLEMENTATION
We implement and evaluate UbiG by collecting channel mea-
surements from our COTS testbed (Figure 1(𝑎, 𝑏)). The testbed
includes AP and user devices each equipped with a 4×8 el-
ement phased-array antenna that can generate 64 beams in
3D space. Both the AP and user devices are IEEE 802.11ad-
compliant [16], and support bit-rate upto 4.62 Gbps by operat-
ing on 1.76 GHz bandwidth at the unlicensed 60 GHz spectrum.
Our AP platform runs an open-source OpenWrt [27] codebase
on a dual-core 1.7 GHz CPU. The 60 GHz RF front-end is
controlled via a peripheral baseband chipset that can steer
the beam directions by exchanging control and coordination
packets through the kernel and firmware commands. Each
device can store the 1.76 GHz channel measurement from the
“Channel Estimation” (CE) header field of the IEEE 802.11ad
data packets [16]. The current COTS drivers and firmwares
(e.g., [19]), however, do not allow us to extract the channel
measurement from the hardware. To overcome this issue, we
use vendor-provided custom-built firmware with customized
APIs to extract the channel measurement to the kernel space
of the devices. We expect such API updates to be available in
the COTS drivers and firmwares soon.

The 1.76 GHz bandwidth allows our devices to measure the
arrival time of each mmWave path with 0.57 ns resolution.
The CE field itself spans only 650 ns as per the IEEE 802.11ad
standard [16]; thus, fast probing and collecting feedback from
the user can finish within less than 300 𝜇𝑠, including all proto-
col overheads. Our user devices, unfortunately, do not support
feeding back the channel measurement in real-time to the AP
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Figure 7: Floorplan of the experimental area. Few of the
user device’s placements are shown with circle.

via the 60 GHz interface due to the current firmware’s limita-
tions. We feedback the measured channel using the devices’
co-located Wi-Fi interface. Under this setup, however, a single
measurement requires more than 600 ms due to the delays in-
troduced in various software stacks and kernel-firmware coor-
dinations. This limits our evaluation to only static users. While
we leave the mobile user evaluation of UbiG as future work,
we note that a software-only implementation of the genetic
algorithm on the resource-constrained and cheap platform is
indeed challenging. Customized and real-time hardware im-
plementation of genetic algorithms, however, is fairly known
and can converge in tens of microseconds [38, 45]. In future,
vendors may choose to incorporate UbiG’s fast beam align-
ment and AP switching algorithm in customized hardware-
firmware implementation to run in real-time. We leave such
real-time implementation for our future work.

6 EVALUATION
In this section, we evaluate UbiG’s performance by conduct-
ing testbed experiments in a typical indoor office space that
include cubicles, furniture, etc., creating a rich multipath envi-
ronment. We first conduct single-AP experiments where the
user devices are randomly placed in more than 200 locations
across a 10× 7𝑚2 area (Figure 7). The AP is mounted at 10 ft
height on top of a tripod stand. We further evaluate the effi-
cacy of our AP ranking and switching algorithm by deploying
3 to 10 APs connected via an Ethernet backhaul to a central
controller.

6.1 Micro-benchmarks
Effectiveness of fast beam alignment: We first empirically
verify whether the model used by UbiG’s fast beam alignment
(Section 3.2) can accurately predict the best beam. We measure
the signal-to-noise ratio (SNR) loss of the model in comparison
with an oracle beam alignment scheme that runs exhaustive
search. The exhaustive search is performed by steering all 64
beams from the AP and user side and measuring the “ground-
truth” channel information. The pair that yields the best SNR

performance is the optimal choice. We evaluate UbiG’s SNR
loss for both single and multi path scenarios. We identified 84
single path settings which show only one spike in the mea-
sured channel of all beams after applying our channel pruning
algorithm (Section 1)5. The rest of the settings, which show
multiple spikes in the channel measurement, are considered
multi path. Figure 6(𝑎) shows that in the single path case, the
median SNR loss is only 1.43 dB with 4𝐾 (𝐾 = 3 by default)
probings. While the worse case SNR loss can go up 7.7 dB,
the loss quickly drops with additional 𝛿 refinement over the
4𝐾 probes. Figure 6(𝑎) shows that with just 𝛿 = 4 probing
refinement the median SNR loss can be contained within 0.39
dB and worse case by 2.87 dB. With 8 additional probings, the
90th percentile SNR loss is contained within 1.5 dB. The effect
from this loss can be overcome by the rate (MCS) adaptation
algorithm since the average SNR difference between two MCS
options is typically bounded by 1.5 dB [16]. Unless otherwise
mentioned, we will use 𝛿 = 8 for the rest of our experiments.

As expected, the SNR loss under multi path cases is higher.
Specifically, Figure 6(𝑏) shows that the median SNR loss is
3.3 dB, while the worse case SNR loss can go upto 17.4 dB
with 4𝐾 probings. The key reason is that it becomes harder
to estimate the multipath profile under the limitations of off-
the-shelf platforms as we described in Section 3.2.2. The error
quickly drops, however, with additional refinements. With the
additional 8 probings, the average SNR loss is only 0.79 dB
and 90th percentile loss is within 2.2 dB. In all, UbiG’s fast
beam alignment protocol yields very close to optimal result in
both single and multi path environments.

UbiG’s accurate beam alignment allows for near-optimal rate
selection compared to the ground-truth, as shown in Fig-
ure 6(𝑐) and (𝑑) for both single and multi path settings. Rate
under-selection can still occur under low SNR conditions, be-
cause the channel measurements become noisier, yielding less
accurate prediction from the optimization model.The average
rate loss under the fast beam alignment, however, is only 6%
compared to the ground-truth.

Effectiveness of SSIM probing: Recall that UbiG leverages
the SSIM metric between beam patterns to decide which 4𝐾
beams to probe to extract the 4-tuple properties of the𝐾 paths
for beam alignment. Figure 8(𝑎) shows the effectiveness of
SSIM probing compared to a random probing scheme. While
the median SNR loss under 4𝐾 probe remains the same under
both SSIM and random probing, SSIM improves the worse
case (last 10-percentile SNR loss). Under single path scenarios,
the worse case SNR loss with SSIM probing can be upto 7.7
dB, while random probing can exacerbate this SNR loss upto
17.42 dB. This loss is amplified under multi path cases where

5Multiple spikes with less than 1% energy of the first-arrival-path are still
considered as a single path case.
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the worse SNR loss under random probing can be upto 40.24
dB! Because, under random probing the correlation of the
measured channel of 4𝐾 can not be reduced and thus the
optimization solver yields poor result in aligning the best
beam direction. Note that, this SNR loss can be reduced under
both scenarios by employing additional 𝛿 refinements as well.
Under random probing, however, it needs more refinement to
reduce the SNR loss. Figure 8(𝑏) shows that under both single
and multi path cases, SSIM probing can confine the SNR loss
within 3 dB with 8 additional probings. In contrast, to achieve
the same performance, the random approach needs upto 14
additional probings.

Performance scalability: Our experimental platform sup-
ports a small phased-array (4×8), and can generate only 64

beams. Thus, we resort to a large-scale simulation to under-
stand the scalability of the fast beam alignment protocol. We
build a ray tracing simulator to represent a large 50×50 𝑚2

space with multiple specular and point reflectors that generate
a multipath rich environment. The simulator uses the classical
Saleh-Valenzuela multi-path channel model [22]. We mounted
the AP at one corner of the indoor area and placed the user
device in 300 different locations. To compare the results under
different sized phased-array antennas, we vary the number of
antenna elements from 32 to 512 in a 2D antenna array. For
each of the antenna array, we follow a standard codebook [4]
to generate 64 to 1024 beam patterns. For each device location,
the AP steers all its beam directions to measure the channel
and SNR condition at the user device. Then, we apply UbiG’s
fast beam alignment algorithm6 to predict the best beam. In
order to understand the behavior of the alignment protocol un-
der various SNR conditions, we bucketize the measurements
into three conditions: (1) “Poor” SNR: best beam can achieve
maximum SNR up to 5 dB. (2) ”Medium” SNR: best beam can
achieve SNR between 5-15 dB. (3) “Good” SNR: best beam
can achieve SNR beyond 15 dB. Figure 9 compares the SNR
loss of UbiG’s fast beam alignment over the exhaustive search.

The simulation shows multiple interesting results. Under “medium”
SNR conditions (Figure 9(𝑏)), UbiG’s fast beam alignment can
already approach the optimal result even with 1024 beams.
Whereas a small 4𝐾 probing can still have 10.9 dB SNR loss

6𝐾 is set to 3, in consistent with prior empirical studies [3, 39, 43].
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Figure 11: Minimum number of APs to probe to find the
best AP. Mean and std are calculated from 10 random de-
ployment in 10x7 𝑚2 area for each density setting.

under 1024 beams, this quickly converge to only 1.6 dB with
additional 8 probings. Under “good” SNR conditions, the SNR
loss with 1024 beams can be even smaller, down to 0.99 dB.
Under “poor” SNR condition (best beam SNR < 5 dB), how-
ever, UbiG can not align the best beam with high accuracy
for large phased-arrays. While the mean SNR loss can be un-
der 2.3 dB for a 256-beam phased-array with the fast beam
alignment, this loss can be very high under 1024 beams with
90th percentile upto 26.2 dB! Because, under “poor” SNR con-
dition, the channel measurement becomes highly noisy and
gives noisy input to UbiG’s channel pruning (Algorithm 1)
and optimization solver (Section 3.2). The error under “poor”
SNR, however, has minimal impact on UbiG’s overall goal
of ubiquitous Gbps connectivity. Under poor SNR conditions,
UbiG will rapidly switch the user device to a new AP that
provides better SNR.

Effectiveness of AP ranking: UbiG leverages cooperation
among APs to enable ubiquitous Gbps connectivity. Specifi-
cally, UbiG first ranks the APs to identify the candidate APs
that could potentially support Gbps connectivity when the
primary AP is blocked. We first evaluate the efficacy of the AP
ranking scheme through an example scenario. We deploy 10
APs in the 10×7𝑚2 indoor area (Figure 7) to emulate an ultra-
dense deployment and connect a user device to one of them
(AP2). We then leverage the channel measurements from the
fast beam alignment of the primary AP2 and employ the AP
ranking algorithm (Section 4.1) to predict the beam strength
distribution profile of all 10 APs. Figure 10(𝑎) and (𝑏) show
the ground-truth and predicted beam distribution profile from
all 10 APs to the user device. Each curve represents the relative
strength of all the beams from the AP to the user device. The
ground-truth measurement in Figure 10(𝑎) shows AP5 to be
the best one, since it can establish the strongest beam to the
user device. While UbiG’s predicted beam strength distribu-
tion profile in Figure 10(𝑏) does not match with measured
profile exactly in absolute sense, the prediction correctly ranks
AP5 as the best one (also c.f., Figure 10(𝑐)). Another key point
to note here is that, the best AP prediction is achieved using
only channel measurements from the fast beam alignment of

the AP2 where the user is currently connected to.

We further evaluate UbiG’s AP ranking under different AP
densities (3-10 APs in our floorplan area). For each AP deploy-
ment, we place the user device in 10 random locations and
identify the ground-truth best AP through extensive measure-
ment search. We then compare the effectiveness of UbiG’s AP
ranking by utilizing the channel measurement from the fast
beam alignment of one of the APs. The results in Figure 11
show that UbiG’s AP ranking scheme can find the best AP for
each setting. The best AP always lies within the first 3 APs of
UbiG’s ranked order, even under an ultra-dense deployments
of 10 APs.

6.2 TCP over UbiG
Next, we evaluate the direct benefit of UbiG’s fast beam align-
ment algorithm to upper-layer protocols, in particular TCP
which is known to be sensitive to link dynamics. Since we
are unable to run the optimization solver of Equation (5) in
real-time due to hardware constraints, we first calculate the
latency of the beam alignment algorithm and then emulate
the impact of such latency on TCP. Specifically, we modify
the kernel of our platform to drop packets at the 60 GHz radio
during the beam alignment phase, which mimics the effect
of beam alignment time on TCP7. Figure 13(𝑎) shows the
end-to-end latency of a TCP flow from an AP to a user (5m
away). As expected, the TCP latency is strictly affected by the
underlying beam alignment latency, growing upto 764.43 ms
for 512 beams when running IEEE 802.11ad. This is clearly
unacceptable for real-time applications. The TCP end-to-end
latency further grows with the number of users in the net-
work, and can go upto 2 seconds.UbiG’s fast beam alignment,
in contrast, can limit the end-to-end latency to less than 20
ms.

Figure 12 provides a microscopic exposition of how the beam
alignment latency is amplified at the TCP level. We observe
that UbiG has no effect on the TCP congestion window (cwnd)
adaptation8 for either 64 or 1024 beams (Figure 12(𝑎, 𝑐)). For
IEEE 802.11ad, however, even tens of ms of alignment latency
for 64 beams can disrupt the cwnd growth (Figure 12(𝑏)). The
effect is even worse for 1024 beams. Figure 12(𝑑) shows that
the cwnd completely shuts down after 3.2 s of beam alignment
due to TCP time-out, and takes additional 6.6 s to recoup and
start growing back. Finally, TCP’s cwnd dynamics directly
affect the TCP throughput. Our iPerf measurement (Figure
14(𝑎, 𝑏)) shows that UbiG maintains a relatively stable TCP
throughput of around 2 Gbps. In contrast, several seconds of
TCP disruptions can occur while running the IEEE 802.11ad
beam alignment.

7During beam alignment no data packets are transmitted.
8We use default TCP CUBIC[20] in our OpenWrt AP platform.
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7 RELATED WORK
Beam alignment algorithms: The standard multi-level beam
searching used by the COTS IEEE 802.11ad devices can take
hundreds of ms to few seconds to find the best beam alignment
[41, 54]. State-of-the-art compressed sensing solutions [23, 30,
31] have improved scalability by requiring only O(𝐾log(𝑁))
probes, for 𝑁 beam options and 𝐾 channel paths. These pro-
posals, unfortunately, require phase-coherence across measure-
ments or customized phased-array antennas [2, 15], which are
not supported by commodity platforms.

Recent non-coherent designs can be implemented on commod-
ity platforms [7, 36]. They use coarse SNR (and not channel
response) measurements, however, and hence they have limi-
tations in aligning the beams in multipath mmWave channels.
BeamSpy [43] allows to infer the best beam alignment with
fast search, but works only for quasi-stationary links. The sys-
tem proposed in [21] allows for zero overhead beam alignment
by implementing a two-lobe beam pattern at the receiver. The
system, however, requires specific antenna hardware support.



It is unclear how it performs with the imperfect beams sup-
ported by commodity devices (c.f., Figure 2). Finally, a few
out-of-band solutions e.g., [26, 41, 48] require additional hard-
ware, such as MIMO Wi-Fi radios, location sensors and depth
cameras, to identify the best beam. Different from all exist-
ing works, UbiG is able to identify the best beam in dynamic
mmWave settings with a very few probe packets. It works
with today’s cheap COTS mmWave hardware and scales well
for future platforms supporting very large phased-array an-
tennas.

AP switching:Many AP switching solutions have been pro-
posed in lower-frequency Wi-Fi and cellular networks (e.g.,
[8, 25, 29, 40, 51]), but the challenges remain largely unex-
plored in mmWave networks. The concept of “picocell” switch-
ing was recently discussed in [36, 54], but the path tracking
from several “picocell” base-stations will likely overwhelm
the link connection during continuous movement. Pia, a pose
information assisted AP switching mechanism, has been re-
cently proposed to make mmWave networks robust [48]. It
requires precise location and orientation sensing capability on
mobile devices which is available only on specialized mobile
hardware (e.g., certain VR headsets), however. Further, the
FoV based AP switching solution does not work when the FoV
of the mobile devices itself changes during partial blockage or
mobility. UbiG is the first system that provides Gbps mmWave
connectivity in a dense realistic mmWave deployment with a
scalable AP-switching solution and requires no out-of-band
sensors.

8 CONCLUSION
In this paper, we design and implement the key building blocks
of a scalable and ubiquitous Gbps mmWave wireless network,
which can provide latency guarantees, even using today’s
cheap COTS hardwares. First, we introduce an efficient beam
alignment algorithm that can identify the best beam for a
mmWave link with guaranteed latency, even when the devices
are equipped with large phased-array antennas. Second, we
devise an infrastructure-side predictive AP switching solution
to guarantee consistent Gbps connectivity under device mo-
bility and blockage. Our experimental results show that UbiG
performs close to an “Oracle" solution which instantaneously
knows the best AP-user pair and the strongest communication
beam. We believe the algorithms in UbiG can be the key build-
ing blocks for the next-generation 5G networks consisting of
dense mmWave deployments.
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