Towards Scalable and Ubiquitous Millimeter-Wave Wireless Networks

Sanjib Sur Ioannis Pefkianakis, Xinyu Zhang, Kyu-Han Kim

ACM MobiCom 2018

Global demand for wireless data is skyrocketing

Source: Cisco VNI, 2016 - 2021

Emerging devices stress wireless network

Immersive VR/AR

Autonomous car

5 ~ 6 Gb/s wireless speed with sub-10 millisecond latency

Locally generates more than 10 Gb/s *

* https://datacenterfrontier.com/autonomous-cars-could-drive-a-deluge-of-data-center-demand/

IMT's vision: Minimum capability of radios by the year 2020

- Peak capacity > 20 Gbps
- Connection density
 - > 1 million devices/km²
- Last-mile latency
 - < 4 ms for mobile broadband</p>
 - < 1 ms for ultra low-latency</p>

 > 3x spectral efficiency; > 100x area traffic capacity; > 100x network energy efficiency; > 300 Mph mobility support; ... *

* ITU towards "IMT for 2020 and beyond": https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020

Millimeter-wave (mmWave) spectrum

Large unlicensed spectrum at mmWave

Off-the-shelf devices offer up to 7 Gbps of wireless bit-rate!

mmWave link challenges Link adaptation

mmWave radios use phased-array antenna to focus the signal energy towards one direction

mmWave link challenges Blockage

Even aligning the beam does not guarantee link connectivity

Challenges

Challenges

Challenge: mmWave link adaptation

10 ms – 1000 ms

beam alignment latency *

* Even for 64 beams: [SIGMETRICS'15, NSDI'16, MobiCom'17]

Challenge: mmWave link adaptation

How to scale up beam alignment for large number of beams?

Finding common dominant path

Finding multiple dominant paths

Finding multiple dominant paths

How many measurements do we need to find all the dominant paths?

 $(a_1^*, \theta_1^*) = argmin |B_i(\theta_1) * a_1 - h_i|^2$ $(a_2^*, \theta_2^*) = argmin |B_i(\theta_2) * a_2 - h_i|^2$

Path sparsity at mmWave

Upper bound K on the number of paths

Path sparsity at mmWave

We need 4K measurements to find all the dominant paths

Signal travels along a lew paths only

Upper bound K on the number of paths

On a COTS testbed with 64 beams

Beam directions	IEEE 802.11ad	Compressed sensing	Our design (4K + 8)
16			
32			
64			
128			
256			
512			
1024			

Beam directions	IEEE 802.11ad	Compressed sensing	Our design (4K + 8)
16	0.51 ms		
32	1.01 ms		
64	2.03 ms		
128	4.04 ms		
256	106.07 ms		
512	310.11 ms		
1024	775.76 ms		

Beam directions	IEEE 802.11ad	Compressed sensing	Our design (4K + 8)
16	0.51 ms	1.32 ms	
32	1.01 ms	1.53 ms	
64	2.03 ms	2.01 ms	
128	4.04 ms	2.67 ms	
256	106.07 ms	2.85 ms	
512	310.11 ms	3.03 ms	
1024	775.76 ms	3.36 ms	

Beam directions	IEEE 802.11ad	Compressed sensing	Our design (4K + 8)
16	0.51 ms	1.32 ms	
32	1.01 ms	1.53 ms	
64	2.03 ms	2.01 ms	
128	4.04 ms	2.67 ms	0.3 ms*
256	106.07 ms	2.85 ms	
512	310.11 ms	3.03 ms	
1024	775.76 ms	3.36 ms	

* 90th percentile SNR loss is below 1.5 dB (SNR range: 5 ~ 15 dB)

Challenges

Challenges

mmWave device switch

Challenge: device switch decision

Predictive device switch

Fast device switch result

3x faster device switch time

Summary

Potentials and challenges of mmWave networks

- Wide-spectrum at mmWave enables high-throughput and low-latency applications
- * Beam alignment & blockage are key-barriers for mass adoption
- System design needs optimizations across link, protocol, and system stack

System summary

- * Sub-ms scalable beam alignment at mmWave
- * Sub-10 ms multi-device cooperation
- * End-to-end system, real-time, and standard-compliant