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ABSTRACT
Multi-User MIMO, the hallmark of IEEE 802.11ac and the
upcoming 802.11ax, promises significant throughput gains
by supporting multiple concurrent data streams to a group of
users. However, identifying the best-throughput MU-MIMO
groups in commodity 802.11ac networks poses three major
challenges: a) Commodity 802.11ac users do not provide full
CSI feedback, which has been widely used for MU-MIMO
grouping. b) Heterogeneous channel bandwidth users limit
grouping opportunities. c) Limited-resource on APs cannot
support computationally and memory expensive operations,
required by existing algorithms. Hence, state-of-the-art de-
signs are either not portable in 802.11ac APs, or perform
poorly, as shown by our testbed experiments. In this paper,
we design and implement MUSE, a lightweight user group-
ing algorithm, which addresses the above challenges. Our
experiments with commodity 802.11ac testbeds show MUSE
can achieve high throughput gains over existing designs.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communications Networks

Keywords
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1. INTRODUCTION
Multi-User MIMO (MU-MIMO) technology uses precod-

ing (beamforming) to support multiple, concurrent data streams
from an Access Point (AP) to a group of users. The result-
ing theoretical capacity grows proportionally with the num-
ber of antennas at the AP. Owing to such advantage, MU-
MIMO has been embraced by the latest wireless LAN stan-
dard IEEE 802.11ac to realize Gbps downlink. It is also con-
sidered as a key high-speed feature for the upcoming IEEE
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802.11ax [1] and 5G wireless networks [2]. To materialize the
huge potential, in addition to precoding, an MU-MIMO AP
must select a group of users, whose instantaneous wireless
channels are orthogonal and consequently, concurrent trans-
missions do not cause inter-user interference. Although the
design of MU-MIMO user selection has been well established
in wireless communication theory, there are 3 major prac-
tical challenges for designing user selection in commodity
APs.
(a) Limited feedback: State of the art algorithms leverage
users’ Channel State Information (CSI) feedback, to iden-
tify the best-throughput user groups [3–7]. However, full
CSI feedback results in large overheads, which may even
nullify the MU-MIMO gains [8]. To overcome this limita-
tion, 802.11ac standard supports only a compressed form of
CSI (named V matrix) that directly specifies how the AP
should precode and de-correlate data across multiple users.

In the absence of users’ full CSI, legacy algorithms in com-
modity 802.11ac APs rely on MAC-layer feedback, specif-
ically, Packet-Error-Rate (PER) and PHY rate statistics
(MCS), to identify MU-MIMO groups. Specifically, they
assign users with similar profiles (e.g., same channel band-
width and throughput dynamics) to the same MU-MIMO
group. They break the group if it suffers from high PER. De-
spite its simplicity, such a“trial and error”approach can lead
to significant performance degradation. Our experiments
with commodity testbeds show that Single-User MIMO (where
AP serves one user at a time) achieves up to 72% throughput
gains over legacy MU-MIMO, for 25% of the experimental
cases. The root cause is that PER-based algorithms can-
not capture the users’ channel correlation and often form
groups with high inter-user interference, which raises PER
and drops performance. High PER further degrades other
MAC/PHY operations such as rate adaptation (RA).
(b) Heterogenous bandwidth users: Due to hardware
capability and external interferences, not all 802.11ac users
can support the same channel bandwidth. However, MU-
MIMO users with different channel bandwidths cannot be
grouped together, since an AP can only transmit on a single
center frequency and channel bandwidth at a time. Hence,
heterogeneous channel bandwidth configurations can limit
MU-MIMO grouping opportunities and lead to significant
throughput degradation. Whereas an AP can force all users
to the lowest available channel bandwidth to maximize the
likelihood of MU-MIMO grouping, this may sacrifice cer-
tain users’ channel bandwidth utilization. A proper tradeoff
must be made to maximize aggregate users’ throughput.
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(c) Limited-resource APs: Legacy user selection (and
other core MAC-layer functionalities) are typically imple-
mented in the firmware of WLAN system in commodity APs
to achieve high performance. However, 802.11 chipset ven-
dors curtail memory and CPU capability of their chipsets to
reduce costs. Hence, existing MU-MIMO protocols [9–11]
that require complex mathematical and memory intensive
operations, are not portable to such platforms. Since AP
chipset capability has not been significantly changed over
the past 8 years (from the advent of 802.11n - e.g. [12]), we
expect that such system factors will remain a key constraint
for future implementations, and must be properly addressed
by MU-MIMO designs.

In this paper, we propose a new Mu-mimo User SElection
(MUSE) design for 802.11ac commodity networks, which ad-
dresses the above challenges. MUSE leverages 802.11ac’s
limited channel feedback to identify the best-throughput
MU-MIMO groups and bandwidth configuration. It is able
to capture inter-user interference, by computing the V ma-
trix correlation among users, which acts as proxy of their
channel correlation. This leads to a new SINR metric that
allows the AP to gauge a user’s potential throughput prior
to it joining an MU-MIMO group. Our experiments show
that the approximation error of our SINR metric compared
to full CSI SINR estimator is typically less than 0.5 dB.

Further, MUSE is able to boost MU-MIMO gains for
heterogeneous (in terms of bandwidth) 802.11ac networks,
by optimizing users’ bandwidth configurations, to increase
grouping opportunities. Based on the channel information
of current bandwidth, it infers the SINR of alternative band-
widths with no additional sounding overhead, and then se-
lects the group-bandwidth combinations with highest through-
put. Its inference model is based on our observation that,
V matrix (and hence channel) correlation of the users in
an MU-MIMO group is similar across different bandwidths,
while there is around 3 dB power gain upon halving the
channel bandwidth. To tame the computational cost in
searching for the best combination, MUSE uses an informed
greedy user selection, which is able to prune in advance from
the search space, those groups with suboptimal throughput.

To enable real-time execution of user selection in resource-
constraint APs, we introduce a new DMA-engine-based kernel-
firmware communication architecture that allows key MU-
MIMO functionalities (CSI processing, SINR estimation, etc.)
to be efficiently migrated to the AP’s kernel space running
the relatively powerful general-purpose processor with larger
memory. This architecture can be reused by all 802.11ac-
compatible, real-time MU-MIMO protocols that rely on CSI
processing. We validate the efficiency of MUSE design in a
network comprised of commodity 802.11ac APs and smart-
phones. For comparison, we also implement PUMA [13] user
selection, which does not require CSI and can be ported to
802.11ac APs. Our results show up to 2× and 4× aggre-
gated and per-user throughput gains respectively, over the
legacy algorithm and PUMA, in controlled settings. In field
trials, per-user throughput gains can be up to 61%.

In summary, our contributions are the following:
(1) We conduct a measurement study of commodity 802.11ac
MU-MIMO networks, and identify the limitations of legacy
MU-MIMO user selection designs (Sec. 3). To the best of
our knowledge, this is the first work that characterizes MU-
MIMO performance in 802.11ac commodity testbeds.

(2) We design MUSE, a lightweight 802.11ac-compliant sys-
tem that employs a new SINR metric for optimized user
selection, taking into account the limited CSI feedback con-
straint and the heterogeneous bandwidth among users (Sec. 4).
(3) We design and implement a firmware-kernel communi-
cation architecture that enables MUSE to run on resource-
constraint, commodity 802.11ac APs (Sec. 5). This is the
first such implementation, since existing MU-MIMO user
selection protocols are mainly evaluated through analysis,
simulations, or using software radios where all processing is
done in PCs.
(4) We evaluate MUSE’s performance, in various static, dy-
namic controlled settings and through larger-scale, realistic
field trials with 802.11ac smartphone users (Sec. 6).

2. IEEE 802.11AC BACKGROUND
IEEE 802.11ac operates on 5GHz, and supports denser

modulation (up to 256-QAM) and faster MIMO (up to 8
streams and 6.9 Gbps rates) compared to its predecessor
802.11n. It also supports frame aggregation where several
MAC Protocol Data Units (MPDUs) are aggregated into an
A-MPDU to amortize protocol overheads. The key differ-
entiator over 802.11n is the 802.11ac MU-MIMO feature,
which uses beamforming to support concurrent downlink
data streams from an AP to a group of users.

To support MU-MIMO beamforming, an 802.11ac AP needs
to first follow a sounding protocol [14] to probe users and
collect a VHT Compressed Beamforming Feedback (CBF)
from them. The CBF is represented by V, essentially a
steering matrix that specifies how the AP should decorrelate
the transmission data to multiple users. Suppose H is the
channel matrix measured at the user’s side from sounding
packet. The user calculates V by applying Singular Value
Decomposition (SVD) on H: H = UDV H . To reduce the
overhead in feedback transmission, V is further compressed
through Givens Rotation [14,15], quantization and grouped
over multiple subcarriers [14], which can reduce the overhead
by 129.1% to 268.4% compared to full CSI H depending on
the number of AP’s antennas. Given V , the AP precodes
transmission data x as u = V x following the Eigen-subspace
beamforming [16]. Upon receiving the precoded data, each
user applies the matrix U to extract its own data, treating
others’ data as interference:

UHy = UH(Hu+ n) = UH(UDV H)V x+ ñ = Dx+ ñ (1)

Apart from CBF, 802.11ac users provide a MU Exclusive
Beamforming report to AP, which is only available in MU-
MIMO mode, and carries per-subcarrier delta SNRs along
with an average (across subcarriers) SNR. This feedback can
be used by AP to estimate the SNR of different subcarriers.
However, this SNR is calculated from the sounding packet
and does not capture inter-user interference. Note that, the
complete channel matrix H (CSI) is a Nr×Nt matrix (where
Nr and Nt are the number of receive and transmit antennas,
respectively) and it cannot be computed from V and SNR.

An 802.11ac AP decides upon a set of users to transmit
data concurrently through a user selection algorithm that
precedes the MU-MIMO sounding and beamforming. User
selection algorithm is not specified by the 802.11ac standard
and it is AP vendor’s implementation specific. Each user
within an MU-MIMO group can operate with independent
PHY rate, identified by a rate adaptation algorithm.
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Figure 1: Experimental floorplan. Spots AP1-AP3 and P1-
P20 mark the locations where APs and users are placed.
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Figure 2: Overview of Legacy-US.

802.11ac supports 20, 40, 80 MHz channel bandwidths,
and an optional 160 MHz bandwidth. An 802.11ac device
can use a 20 MHz sub-channel only if it is not occupied by
another transmission. To negotiate a higher channel band-
width, an 802.11ac AP sends an RTS to the receiver on each
of the sub-channels (e.g., 4 RTS for 80MHz). The receiver
responds with one CTS for each unoccupied sub-channel.
RTS/CTS negotiation is not required on a per-packet basis
and its implementation is again vendor specific.

3. 802.11AC MU-MIMO PERFORMANCE
In this section, we conduct extensive experiments to un-

derstand the working mechanisms and limitations of legacy
802.11ac user selection.

3.1 Platform and Methodology
Our experiments use commodity AP boards, equipped

with a 4×4 MU-MIMO-capable 802.11ac 5 GHz radio. The
802.11ac radio supports up to 80 MHz channel bandwidth
and up to 256-QAM modulation level, with 1733.3 Mbps
peak PHY rate. It has 4 antennas, but only supports up
to 3 data streams (users) in MU-MIMO mode. MU-MIMO
user selection and rate adaptation are implemented in the
board’s firmware, and the source code is available for our
modifications. Our experiments adopt Xiaomi Mi 4i smart-
phones [17] as users. Xiaomi Mi 4i has a 802.11ac wave-2
chipset, with one receiving antenna.

We conduct our experiments in an office building (floor
plan shown in Fig. 1), using both controlled experiments
(interference-free, without human mobility) and field trials.

3.2 Overview of Deployed 802.11ac Designs
User selection: An overview of our platform’s MU-MIMO
user selection algorithm (named as Legacy-US for Legacy
User Selection) is shown in Fig. 2. A user can join an MU-
MIMO group, only if it has sufficient backlogged traffic and
operates at a high PHY rate. The latter design choice seeks
to prevent users operating at low rates, from further drop-
ping their rates in an MU-MIMO setting, where transmit
power is shared among users. An eligible user can then join
an MU-MIMO group of users with similar profiles. The pro-

file includes channel bandwidth and temporal throughput
dynamics. First, only users with the same channel band-
width can be grouped together. This is because an AP
can only transmit using a single center frequency and band-
width at a time. Moreover, users of different bandwidth may
have different interference profiles, and hence the AP can-
not transmit data to all of them using the highest channel
bandwidth. Second, Legacy-US groups users with similar
throughput gradient (i.e., throughput changes similarly over
time). If the group results in high PER, the users’ through-
put profiles will change and no longer match the group’s
profile. Consequently, users will be removed from the group.
Rate adaptation (RA): The RA algorithm seeks to iden-
tify the best-throughput PHY rate (MCS, channel band-
width and number of spatial streams), at runtime. Our
platform uses a variant of Minstrel [18], which maintains
per-user PER statistics for each rate, updated upon the re-
ception of ACK frames. Minstrel uses PER to estimate the
throughput under each bit-rate choice.

The above algorithms are representative of what is imple-
mented in commodity APs and proposed by research stud-
ies. PER-based RA has been widely adopted by large 802.11
vendors such as Qualcomm and Broadcom for its simplicity,
and widely studied in the literature [19, 20]. PER-based
user selection for MU-MIMO is currently implemented in
the commodity APs.

3.3 A Case Study
Legacy MU-MIMO performance diagnosis. To profile
Legacy-US, we start with a controlled setting where an AP
transmits back-to-back UDP traffic to 3 static users. Our
setting is free of external interference and human mobility.
We compare Legacy-US with the SU-MIMO mode, where
the AP serves one user at a time. Note that Xiaomi phones
only have one receiving antenna, so the SU-MIMO mode
only supports one data stream. Ideally, we expect that
MU-MIMO should have much higher throughput than SU-
MIMO, since channel is time-shared in SU-MIMO mode.

Surprisingly, our case-study experiment (Fig. 3(a)) demon-
strates that SU-MIMO achieves 16.8% to 42% higher aggre-
gated throughput compared to Legacy-US, for all channel
bandwidth settings. We found the poor Legacy-US perfor-
mance roots in users’ higher PER. Fig. 3(b) shows the distri-
bution of the per-user PER averaged over 200ms windows.
While SU-MIMO PER is mostly zero and never exceeds 4%,
Legacy-US PER can reach upto 30%. Given the external-
interference free setting, we attribute Legacy-US’s poor per-
formance to the inter-user interference, which happens when
users with correlated channels are grouped together [9].

The high PER changes the users’ throughput gradient
profiles and consequently breaks the MU-MIMO group (cf.
Fig. 2). We call this phenomenon group thrashing. We illus-
trate group thrashing in Fig. 4, which shows the variation
between beamforming (BF) mode and the PER, across 7
seconds. The BF mode for user k is defined as the num-
ber of users in user k’s MU-MIMO group. BF mode equals
to 1 when k is the only user in a group (i.e., SU-MIMO
mode). We can see that during the 0s-1s time window, all
users start with SU-MIMO and have similar PER and thus
throughput dynamics. So Legacy-US will force them to join
the same MU-MIMO group. Afterwards (1s-5s), the MU-
MIMO PER due to inter-user interference can exceed 12%
for all the users. This will make the group break at the 5th
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second. Even after group thrashing, PER may remain high
until the rate adaptation (RA) protocol re-identifies the best
rate (e.g., 5.6s for user 2). We have observed that such group
thrashing happens recurrently over a long term. As a result,
the average MU-MIMO network throughput becomes lower
than SU-MIMO.
Impact on rate adaptation: Inter-user interference and
group thrashing negatively impact the RA algorithm as well.
To gauge the RA algorithm, we first measure the best-throughput
fixed-rate when users operate in SU-MIMO, and when all
users are forced to join an MU-MIMO group (Fig. 5(a)).
Fig. 3(c) plots a histogram of the PHY rates chosen under
Legacy-US, which span many levels other than the best-
throughput ones. For example, whereas the best fixed rate
for user 3 is MCS 9 (390 Mbps) in SU-MIMO mode and MCS
6 ( 263.3 Mbps) in MU-MIMO, 62% of Legacy-US transmis-
sions occur at different rates than the best ones. The poor
adaptation roots in group thrashing. Since a user’s best
PHY rate can be different in MU-MIMO and SU-MIMO
modes, every time a user joins/leaves a group, RA needs
time to converge to the new best rate. Even an oracle RA
algorithm that can identify the instantaneous best rate can-
not compensate for poor MU-MIMO user selection. It can
only react by switching to lower a MCS to cope with the
inter-user interference.
Impact of heterogeneous channel bandwidths: Users
with different channel bandwidths cannot be grouped to-
gether (cf. Sec. 2 and Sec. 3.2), which limits MU-MIMO
grouping opportunities. To illustrate the impact of this con-
straint, we repeat our case study, in a setting where two
users operate at 40 MHz and one at 80 MHz. Legacy-US will
group the two 40 MHz users, leaving the 80 MHz user at SU-
MIMO mode. Interestingly, forcing all users to 40 MHz and
putting them in one MU-MIMO group leads to 85% higher
aggregated throughput over Legacy-US. Although, reducing
an 80 MHz user to 40 MHz may reduce its own PHY rate
(as shown in Fig. 3(d))1, simultaneous data stream transmis-
sion to the users of an MU-MIMO groups can compensate
for such loss.

1Interestingly, it did not reduce the PHY rates for User 1 & 2
in this case, since the power reductions due to more streams
were not sufficient enough to change their operating MCSs.

Summary: Our results show that the MAC-layer feedback
based MU-MIMO user selection designs in 802.11ac devices
perform poorly. Specifically, Legacy-US cannot properly
identify user groups with orthogonal channels, which re-
sults in inter-user interference and high PER. It leads to
group thrashing and sub-optimal rate selection. Simply op-
timizing RA cannot compensate for erroneous MU-MIMO
user selection either. Further performance degradation re-
sults from the disjoint user selection and channel bandwidth
adaptation. Our findings make the case for a user selec-
tion framework that can effectively account for the user’s
channel orthogonality and bandwidth heterogeneity, while ef-
ficient enough to be executable on commodity 802.11ac APs.

3.4 Performance Over Multiple Locations
We verify the generality of our findings, by repeating the

case study experimental setting to more than 100 locations
with various channel bandwidths. Our goal is to both un-
derstand the limitations of Legacy-US in multiple settings,
and the MU-MIMO gains when user selection can identify
users with uncorrelated channels. Fig. 5(b) shows the dis-
tribution of Legacy-US gains over SU-MIMO. We observe
that in approximately 25% of the settings, the gain is nega-
tive, and SU-MIMO achieves up to 72% higher throughput.
Fig. 5(c) shows distribution of users’ PER. Whereas PER is
negligible in SU-MIMO, it can exceed 60% for Legacy-US.
Interestingly, for certain settings, MU-MIMO has compara-
ble PER and more than 2× throughput gain over SU-MIMO.
These represent cases where Legacy-US happen to pick op-
timal user groups, and hints to the importance of grouping
users with uncorrelated channels.

4. MUSE DESIGN
We next present MUSE, which seeks to identify the throughput-

maximizing MU-MIMO group along with the PHY rate and
channel bandwidth settings.

4.1 MUSE SINR Estimation
A major challenge towards designing MUSE is to estimate

the inter-user interference and compute the SINR of a user
before putting it into an MU-MIMO group. Then, SINR can
be used for identifying best-throughput MU-MIMO groups.
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While the theory for MU-MIMO SINR estimation [9, 21] is
well-established, a fundamental question remains open in
practice: How can SINR be estimated in the absence of
users’ full CSI feedback in practical 802.11ac networks?

In MUSE, we model inter-user interference and predict
SINR, by manipulating the CBF matrix V from users. Re-
call that, users’ V matrix specifies how the AP should de-
correlate the transmission data across users of the same
group. Therefore, V matrix intuitively should reflect users’
channel correlation. We experimentally validate our intu-
ition, by measuring the correlation of V matrices between
pair of users at subcarrier s as [22]:

ρ(i, j) =

∑
s||Vi(s)V

H
j (s)||√∑

s||Vi(s)||2
√∑

s||Vj(s)||2
(2)

Fig. 6(a) shows the average V correlations among users of
MU-MIMO groups, from all our experimental settings. The
error bars show the max. and min. correlation. We differ-
entiate the cases where MU-MIMO performs better than
SU-MIMO (no thrashing), and where it performs poorly
(thrashing). We observe V correlation to be almost 2×
higher in MU-MIMO thrashing cases, independently of chan-
nel bandwidth. Our results corroborate that V correlation is
a proxy of the inter-user interference. In what follows, we
formally introduce the model to estimate the inter-user in-
terference leveraging this V matrix.
Interference model: An 802.11ac AP precodes the trans-
mission data (x), following the eigen-subspace beamforming
as V x (Sec. 2). Let yk be the received signal at user k. From
Eq. (1), when user k applies the matrix U to its received sig-
nal, we have:

UH
k yk = UH

k HkV x+ UH
k nk

= UH
k (UkDkV

H
k )Vkxk + UH

k (UkDkV
H
k )

∑
j 6=kVjxj + n̂k

= Dkxk︸ ︷︷ ︸
Signal

+Dk

∑
j 6=kV

H
k Vjxj︸ ︷︷ ︸

Interference

+ n̂k︸︷︷︸
Noise

(3)

We see that the interference term is a function of the V cor-
relation between users within the MU-MIMO group. It also

depends on the Dk, the singular-value matrix corresponding
to user k’s channel. To validate our interference model, we
use our testbed to collect per-subcarrier CSI traces at the
user-side, when a user is served in SU-MIMO mode, and
when the same user is a part of an MU-MIMO group with
another user. We then measure the difference between the
user’s SU-MIMO CSI and MU-MIMO CSI, which reflects
both the inter-user interference and transmit power drop
caused by MU-MIMO. Fig. 6(b) shows that the inter-user
interference estimated from our model in Eq. (3) can con-
sistently follow the CSI difference. Specifically, the CSI dif-
ference (which varies across subcarriers), is approximately 3
dB when inter-user interference is negligible, since the trans-
mit power in MU-MIMO is distributed to two users in our
example. The CSI difference can rise to 8 dB for particular
subcarriers when inter-user interference is high, as captured
by our model. Note that, the model in Eq. (3) does not cap-
ture power split across multiple users and thus there exist
a constant difference of 3 dB across subcarriers between the
estimation and measured CSI difference (Fig. 6(b)).
muSINR metric: MUSE SINR (muSINR) metric is a func-
tion of signal strength P towards a user k, inter-user inter-
ference I2 and noise floor N : SINR = P/(I +N). Based on
Eq. (3), we can model signal strength as: P = E[{Dkxk}{Dkxk}H ] =
(1/K)||Dk||2 (where E[xkx

H
k ] = (1/K), as the AP’s trans-

mission power is equally split among K users). Further,
inter-user interference power is:

I = E[{Dk

∑
j 6=kV

H
k Vjxj}{Dk

∑
j 6=kV

H
k Vjxj}H ]

= E[DkD
H
k ]E[{

∑
j 6=kV

H
k Vjxj}{

∑
j 6=kV

H
k Vjxj}H ]

= (1/K)||Dk||2
∑

j 6=k||V
H
k Vj ||2 (4)

Note that in Eq. (4), D and V are different random variables
and can be considered uncorrelated. Then the AP estimates
the muSINR of user k as:

2MUSE omits interference from other Wi-Fi networks,
which is typically small, since the 802.11 MAC precludes
concurrent transmission from adjacent APs.
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SINR =
1
K
||Dk||2

N + 1
K
||Dk||2

∑
j 6=k||V H

k Vj ||2

=
1/K

(1/ ||Dk||2
N

) + 1
K

∑
j 6=k||V H

k Vj ||2

(5)

muSINR estimation requires matrices V , D and noise floor
N . While V is directly fed back by the user, D and N
are unknowns. We compute factor ||Dk||2/N from average
SNR (SNRk, averaged over all sub-carriers) and delta SNR
(∆SNRk, difference of per-subcarrier SNR and SNRk) pro-
vided by the CBF and MU Exclusive Beamforming reports,
as [14]:

||Dk||2/N = 10
SNRk+∆SNRk

10 (6)

muSINR accuracy: We conduct experiments to evaluate
the accuracy of the muSINR metric, in comparison with
an oracle estimator that has the full CSI matrix (H). To
this end, we first collect channel traces from 10 randomly lo-
cated users associated to one AP. Then we compute muSINR
and full CSI SINR by randomly grouping users, in group
sizes ranging from 2 to 4 (maximum size supported by IEEE
802.11ac). Fig. 7(a) shows the distribution of the SINR dif-
ferences. We observe that muSINR differs from the oracle
SINR by a small median error of 0.2 dB to 0.4 dB across
group sizes, despite its use of the CBF V . The muSINR
error never exceeds 0.5 dB and 0.6 dB for groups with 2 and
3 users, respectively. Even for a group of 4 users, muSINR
has less than 1 dB error for 98% of the samples. Since the
802.11ac PHY rate options’ SINR thresholds are separated
by at least 1 dB [14], this small error is unlikely to affect
MUSE PHY rate adaptation and user selection.

4.2 Estimating D and N

The computation of muSINR requires the factors D and
N (cf. Eq. (6)). These factors can be extracted from the MU
Exclusive Beamforming feedback, but are unavailable before
a user is selected into an MU-MIMO group. To circumvent
this barrier, MUSE leverages channel strength reciprocity, a
property widely used to evaluate both signal strength [23]
and noise [24] in commodity 802.11 devices 3. First, it esti-
mates D by applying SVD to CSI (H) measured at the AP
side, collected from uplink control and data frames. Since
AP and users typically have different transmit power con-
figurations, MUSE calibrates Dk to account for the power
factor. Specifically, it multiplies the factor ||Dk||2/N with

10
PAP−Puser

10 , which is the transmit power difference at AP
and user sides. Puser is sent from users to APs through the
802.11 Event Report frames during association [14]. Finally,
MUSE estimates the noiseN using EVM (Error Vector Mag-
nitude), a statistic that is originally used for rate adaptation,
and available for every received frame’s pilot subcarriers.
3Channel strength reciprocity does not imply channel phase
reciprocity, on which the inter-user interference depends.

We conduct experiments to verify the accuracy of D and
N estimation. Fig. 6(c) compares the factor ||Dk||2/N at
AP and user sides, estimated from similar channel traces as
above. We observe that the ||Dk||2/N factor estimated by
the AP matches close with the ground truth at user side.
Even though the difference may occasionally reach up to
4 dB, the impact on muSINR estimation is much smaller
because of the inter-user interference term (cf. Eq. (5)).

Note that, MU-MIMO user selection requires the CBF
matrix V from users, which is still available to the AP prior
to group formation — the AP can beamform to the individ-
ual users and collect CBF matrix V while communicating in
SU-MIMO mode. MUSE leverages such initial feedback for
selecting users in groups, which we detail below.

4.3 Bandwidth-Aware User Selection
Existing MU-MIMO user selection protocols are oblivious

of the heterogeneous channel bandwidths among 802.11ac
users [3, 5–7, 9, 13]. However, our experiments in Sec. 3.3
show that such an approach can limit MU-MIMO grouping
opportunities, since users of different channel bandwidths
cannot be grouped together. In MUSE, we design a joint
user selection and bandwidth adaptation mechanism to max-
imize MU-MIMO gains. The key challenge for such a design
is to infer muSINR (and hence MU-MIMO performance) at
different bandwidths and to identify the best groups with
additional protocol overhead and computational cost. We
next present how MUSE addresses these challenges.

4.3.1 Low Cost muSINR and Throughput Estimation
MUSE needs to compute users’ muSINRs for each avail-

able channel bandwidth, to identify the best-throughput
bandwidth and MU-MIMO group settings. A naive solu-
tion would be to sound each user at every bandwidth, which
results in significant overheads.
muSINR inference: MUSE can infer the D, N and V
correlation factors, which are required for the computation
of muSINR (cf. Eq. (5)) for every bandwidth option with
no additional sounding, based on two key observations.

First, our experiments in Fig. 6(a) show that, the V matrix
correlation among users in an MU-MIMO group is similar
across different channel bandwidths. Intuitively, the chan-
nel correlation among users depends on the similarity of the
shape of their V s. However, above a certain bandwidth (e.g.,
20 MHz), small changes in the shapes of V s do not affect the
correlation value. We have verified our finding in multiple
settings. Hence, we can approximate the V correlation for
every bandwidth, based on the measured V correlation of
the current bandwidth setting. Second, an AP proportion-
ally reduces the power per subcarrier as the bandwidth is
increased, to maintain a constant total transmit power. For
example, given a total transmit power P , the AP doubles
the transmit power per subcarrier at 40 MHz compared to
80 MHz, which ideally corresponds to a 3 dB gain per sub-
carrier. Given that for a channel bandwidth BW1 the signal
strength is ||Dk||2 (cf. Eq. (5)), then, the signal strength for
a new bandwidth BW2 is α · ||Dk||2, where α = BW1/BW2.
From Eq. (5), the per-subcarrier muSINR at different band-
widths can be estimated as:

SINR =
α · 1

K
||Dk||2

N + α · 1
K
||Dk||2

∑
j 6=k||V H

k Vj ||2
(7)
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Algorithm 1 Informed Greedy User Selection

1: Initialize & sort user set: U = {u1, u2, . . . , uN}. Define
T80,T40,T20

2: Final group set: φ = {}. Incomplete group set ψ = {}
3: for bw ε {80, 40, 20}
4: greedy user selection(U , bw, φ, ψ)
5: Remove the users included in set φ from U . Go to step 3.
6: end for
7: return φ ∪ ψ
8: function greedy user selection(U , bw, φ, ψ)
9: Find the best-throughput group/user g ∈ ψ ∪ {ui} for

ui ∈ U
10: Set bandwidth for g to bw (if possible) and name it as g′

11: foreach ui ∈ U
12: If (Th(g′ ∪{ui}) > (Th(g′) +Th(ui))/2 & SINRui∈g′ >

Tbw & bwui == bw & g′ incomplete)
13: g′ = g′ ∪ {ui}
14: If (g′ is complete)
15: If (Th(g′) > Th(g)) φ = φ ∪ {g′} else φ = φ ∪ {g}
16: elseif (Th(g′) > Th(g)) ψ = ψ ∪ g′ else ψ = ψ ∪ g
17: end function

Based on the model, MUSE infers muSINR in other band-
widths, without any additional sounding.
RA and throughput model: The muSINR metric is es-
timated per OFDM subcarrier. We calculate an effective
muSINR across all subcarriers using the approach proposed
in [24], which has been shown to be robust in frequency-
selective multipath environment. MUSE uses the effective
muSINR to select the best-throughput PHY rate (i.e., MCS),
spatial streams and channel bandwidth. It maps the muS-
INR to a PHY rate based on the 802.11ac rate tables [14].

Given the PHY rate estimation, MUSE further estimates
the aggregated throughput (Thr) of an MU-MIMO group.
Thr is a function of: (1) the PHY rate rk for a user k
joining an MU-MIMO group, (2) user’s backlogged traffic
bk and frame size, (3) the protocol overheads TO related
to sounding and data transmission, and can be defined as:
Thr = SD

TD+TO
. The amount of data (SD) to be transmitted

at a user k depends on both the backlogged traffic bk and the
maximum frame (A-MPDU) size Sampdu−max,k, which may
be user-specific [19]. Sampdu,k equals to bk · Sampdu−max,k,
and represents the aggregated frame size for a particular
user, where bk ∈ [0, 1]. The transmitted data is then SD =∑|m|

k=1Sampdu,k, where |m| is the number of users in an MU-
MIMO group set m. Our model captures both the traffic
in users’ queues and their achieved frame aggregation level.
The data transmission time (TD) is modeled as Tampdu,k =
Tvht−p + Sampdu,k/rk, where Tvht−p is the PLCP preamble
transmission time, and Sampdu,k/rk is the frame transmission
time. The total time is: TD = max

k∈m
Tampdu,k. The proto-

col overhead (TO) for an MU-MIMO setting is the sum of
sounding and ACK overhead. Our AP platform maintains
per-user state that includes traffic in users’ queues, aggre-
gated frame size, protocol overhead parameters, which are
required for the above throughput estimation.

Note that, the muSINR, PHY rate and throughput esti-
mations are all executed by the AP before it selects users
for MU-MIMO grouping. We now proceed to describe how
MUSE forms user groups based on such estimations.

4.3.2 User Grouping
MUSE seeks to increase the MU-MIMO grouping oppor-

tunities by adjusting the users’ channel bandwidth to allow

for larger groups. For example, in the case study setting
of Fig. 3(d), MUSE will lower the 3rd user’s 80 MHz chan-
nel to 40 MHz, to allow for a group of 3 users at 40 MHz.
Since, MUSE can estimate a group’s aggregated throughput
across all channel bandwidths using its muSINR inference
model, it could use exhaustive search [13] to form the opti-
mal MU-MIMO groups. However, exhaustive search is com-
putationally prohibitive for resource constraint APs, since
for C user-bandwidth pairs, its search space is O(C!). The
SIEVE user selection [25] uses a branch and bound search
approach to reduce complexity. SIEVE has quadratic com-
plexity with the number of users. It uses a factor K to
capture the tradeoff between computational complexity and
channel coherence time, and to prune the branch and bound
tree. It uses empirical measurements to relate K with com-
putational time. However, for APs that run multi-process
Linux OS, the computational time for a particular process
varies significantly with the AP load, and is hard to predict.

MUSE adopts an informed greedy user selection, which is
able to exclude from the search space those user groups with
suboptimal throughput, based on the following observation.

Property 1 An MU-MIMO group of users at BW1 provides
strictly higher aggregate throughput than the same group at
BW2 (where BW1 > BW2), only when all the users in the
group have an SINRBW1 > T .

The above property is derived from the MCS - SNR map-
pings of different channel bandwidths, as defined in 802.11ac
standard [14]. For example, Fig. 7(b) shows that BW1 =
80MHz achieves strictly higher bit-rate than BW2 = 40MHz
only when threshold T ≥ 22 dB.

From the above property, MUSE knows in advance that a
complete group g (i.e., a group with no degrees of freedom
left) operating at BWi, whose users’ SINRBWi > T , per-
forms better than g operating at a lower channel bandwidth.
Hence, it does not need to evaluate lower bandwidths for g.
Based on this rationale, MUSE starts a greedy search from
the highest bandwidth (e.g., 80MHz), and considers only the
users who can support that bandwidth4. MUSE first sorts in
descending order, the users based on their current through-
put and iteratively goes through the list to group the users
that provide the highest aggregate throughput with those
already selected users. At each iteration, it also ensures
that user’s SINR is greater than T , to satisfy the constraint
of Property 1. The search terminates when the group is
complete, or when adding more users to a group results in
lower aggregate throughput than serving them in SU-MIMO
mode. Greedy search is repeated at lower bandwidths for
only the incomplete groups, to allow for more grouping op-
portunities. Alg. 1 shows the steps in detail. Greedy search
is less computationally expensive than exhaustive search,
with linear complexity to the number of users in the best
and average case. MUSE’s informed greedy search can re-
duce computational time up to 67% (given 3 bandwidth op-
tions) compared to a simple greedy search.

MUSE may lower a user’s bandwidth to allow for higher
throughput groups. As a positive side-effect, MUSE can
reduce co-channel interference in 802.11ac networks. Note
that changing a user’s bandwidth requires RTS/CTS hand-
shake, which happens only during group update, and takes
negligible time.

4Our AP sends RTS periodically to negotiate a user’s band-
width, based on the user’s interference profile.
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Figure 8: MUSE system architecture.

4.4 Putting Everything Together
An overview of MUSE system architecture is shown in Fig.

8. MUSE leverages a fast DMA (Direct Memory Access) en-
gine to copy the compressed V matrices, delta SNRs, CSIs
and noise estimation from the firmware to the DDR (we
elaborate on this engine in Sec. 5). This allows for MUSE
core functionality to be implemented in the kernel, which has
access to larger memory and more powerful CPU than the
firmware. MUSE decompresses V matrices and feeds them
along with delta SNR into the muSINR estimator module.
If delta SNRs are not available, it estimates D, N from
CSI and EVM measured at the AP, and inputs them to
muSINR module (Sec. 4.2). The effective user’s muSINR
for a particular group assignment is used by the RA mod-
ule to select user’s best-throughput PHY rate. Through-
put is estimated based on the selected rate and is used by
the user selection module to identify best-throughput MU-
MIMO grouping along with channel bandwidths. MUSE fur-
ther estimates coherence bandwidth and time using CSI, to
reduce computation costs and to adapt sounding and subcar-
rier grouping (detailed in Sec. 5). The selected rates (MCS,
streams, bandwidth) and MU-MIMO groups are used to pro-
gram hardware registers through the firmware.

User grouping can work in concert with existing schedul-
ing policies. For example, scheduling may require users with
the same traffic profiles and priorities to be scheduled at the
same time (to maintain QoE as defined by 802.11e). Group
profiling and scheduling modules can work on top of MUSE
as shown in Fig. 8, and are independent of its operations.

5. IMPLEMENTATION ON COMMODITY
ACCESS POINTS

The current off-the-shelf 802.11ac APs employ a dual ar-
chitecture system. A general-purpose System-on-Chip (a.k.a.
host) controls the entire AP board, running a variant of
Linux OS, while a peripheral WLAN System-on-Chip (a.k.a.
target) runs the wireless MAC/PHY protocols. MU-MIMO
user selection and RA algorithm are implemented in the
firmware of WLAN system in the APs, for better perfor-
mance. However, 802.11 WLAN chipset vendors (such as
Qualcomm, Broadcom, Marvell etc.) curtail memory and
CPU power of their chipsets to mainly reduce costs. Our
AP’s firmware has access to only 960 KB static on-chip mem-
ory distributed in Data and Instructions RAM, whose 98%
is already being utilized by legacy functionalities. MUSE
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Figure 9: Firmware-kernel interaction architecture.

requires more memory space. For example, for a 4-antenna
AP with 16 users operating at 80 MHz, it needs 23 KB
for storing the compressed V matrices and 121 KB for H.
Our AP’s firmware also uses a limited-power 350 MHz CPU.
Chipsets capability has not been significantly changed over
the past 8 years (e.g., 802.11n AR9331 has similar CPU and
128 KB memory [12]), while the functionalities ported in the
firmware are getting more complex and require more mem-
ory. Hence, we expect that such system factors will remain a
key constraint for future MU-MIMO implementations. We
next show how MUSE addresses these challenges.

5.1 Firmware-Kernel Communication Archi-
tecture

MUSE overcomes the limited CPU and memory constraints
by offloading its core functionality to the comparatively pow-
erful “host” system, which runs the Linux kernel on a dual
core 1.4 GHz CPU with a 512 MB DDR3 memory. Fig. 9
illustrates MUSE’s firmware-kernel interaction architecture
to realize the offloading. The host communicates with the
target system through a 32-bit PCIe bus. MUSE leverages
a fast DMA engine to copy the required input for MUSE,
from the target system’s on-chip memory to DDR, through
the PCIe interface. Specifically, it implements a Copy Rou-
tine in the firmware that sets up a fast DMA engine to
copy V , H and N from the hardware Compressed V cache,
CSI and Noise registers to DDR address space. The Copy
Routine periodically (depending on the coherence time up-
date interval) fires the DMA engine to copy per-user V , H
and N . On completion, the DMA generates an interrupt
registered by a Programmable Interrupt Controller in an in-
terrupt service queue, which eventually gets serviced. The
Copy Routine further generates a “soft” interrupt to MUSE
modules that run in the kernel of the host. After estimating
the best-throughput groups and PHY rates, MUSE sends
this information to the firmware, which programs specific
hardware registers before MU-MIMO transmissions.

A concern related to our architecture is the PCIe transfer
overheads, which could prevent MUSE from being adaptive
to channel dynamics. In Fig. 10(a), we measure our AP’s
PCIe transfer latencies from on-chip memory to DDR, for
varying coherence times and data volume (for a fixed an-
tenna setting, data volume depends on the number of asso-
ciated users and subcarriers). This transfer time is measured
at a highly loaded AP, which runs iperf instances to asso-
ciated users. We observe that even for 16 users with 80
MHz channel (16 to be the max. number of V s that can be
stored in our AP’s hardware cache), coherence time is 44.8%
higher than transfer latency. For a less loaded system, over
stable channels, coherence time can be up to two orders of
magnitude greater than this latency. Our experiments never

129



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D
F

Coherence Bandwidth (MHz)

Static Users
Mobile Users

80 200 320 440 560 680 800 920 5
7.5

10
12.5

15
17.5

20

0
1
2
3
4
5
6
7
8
9

Co
he
ren

ce
Ba
nd
wid

th
(M
Hz
)

Coherence Time (ms.)

C
P
U
La
te
n
cy

(m
s.
)

0

10

20

30

40

50

60

80 200 320 440 560 680 800 920

%
of

Ti
m
e
in
P
C
Ie

Tr
an
sf
er

Channel Coherence Time (ms.)

16 Users - 80 MHz
16 Users - 20 MHz
4 Users - 80 MHz
4 Users - 20 MHz

Figure 10: MUSE implementation optimizations. (a) Percentage of channel coherence time spent in PCIe (DMA) transfer.
(b) Distribution of coherence bandwidth. (c) CPU execution latency for varying coherence bandwidth and time.

showed any performance degradation due to PCIe transfer
overheads.

5.2 Complexity Reduction Modules
MUSE seeks to further optimize the computational costs

coming from (1) V decompression, (2) muSINR computa-
tion, and (3) user selection. Decompression is required to re-
verse the Givens Rotation [15] and recover the uncompressed
V matrix. Its overhead depends on the number of antennas
on the AP, number of users, and the quantization level. We
optimize the decompression operation by eschewing matrix
multiplication and sin/cos trigonometric functions, using a
lookup-table based approach. With this optimized imple-
mentation, the per-subcarrier per-user V decompression for
a 4-antenna AP takes approximately 10 µs. muSINR metric
is less computationally expensive since delta SNR is already
available for MU-MIMO users. User selection is the least
computationally expensive module. Particularly, the dis-
tribution of the CPU latency measured in our AP is 84%
for decompression, 14% for muSINR calculation and 2% for
user selection. Decompression and muSINR computation
are performed periodically, per-subcarrier and per-user.

To reduce computational costs, MUSE only performs the
above operations with the time-granularity approximately
equal to coherence time, and frequency-granularity (number
of subcarriers) equal to coherence bandwidth. MUSE esti-
mates the 50-percentile channel coherence bandwidth and
time using uplink CSI measured at the AP, following [8].
Our experiments validate that channel estimation can in-
deed reduce MUSE costs. Fig. 10(b) shows the coherence
bandwidth distribution, measured at various locations in the
floorplan of Fig. 1. We observe coherence bandwidth to be
greater than 4 MHz in 60% of the channels for static users.
Coherence bandwidth is smaller for mobile users (> 4 MHz
in 10% of the cases). Coherence time is typically greater
than 500 ms and can be up to 5s in static settings [26]. Our
AP’s CPU execution time drops significantly with higher co-
herence time and bandwidth, as shown in Fig. 10(c). Specif-
ically, in a scenario where 16, 1-antenna users are connected
to our AP, MUSE CPU execution time varies from 182 µs
to 9 ms, which is much smaller than the typical channel
coherence time. We also observe that coherence time has
greater impact on CPU execution time compared to coher-
ence bandwidth. Since the AP employ the dual architecture
system (Sec. 5), such host CPU execution time does not af-
fect the WLAN packet transmission/reception, which runs
on a separate processing unit.

6. EVALUATION
In this section, we evaluate MUSE performance in a vari-

ety of settings, using testbed experiments. Since CSI-based

MU-MIMO user selection and RA designs are not portable in
commodity APs (full receiver-CSI is not available), we com-
pare MUSE with Legacy-US and PUMA [13]. PUMA selects
the best-throughput PHY rate (MCS and spatial streams)
and user groups without CSI, by calculating SINR based
on the degrees of freedom of each transmission mode as:

SINRpuma = 10log10(Nt−Nr+1
Nr

P/No

Nt
). P/No is the omnidi-

rectional SNR collected at the AP, and Nt, Nr is the trans-
mit, receive antenna setting. PUMA does not adjust user’s
channel bandwidth. We also compare MUSE with an opti-
mal user selection algorithm, using trace-driven emulations
(Sec. 6.4).

6.1 Case Study Comparison
We first evaluate MUSE performance in our case-study

setting (Sec. 3.3). Our goal is to identify if MUSE can over-
come MU-MIMO group thrashing problem of Legacy-US,
and find the best group and rate setting. In Fig. 11(a) we
compare MUSE throughput with Legacy-US, PUMA, SU-
MIMO (configured for all users) and the best-throughput
fixed PHY rate and MIMO (SU- or MU-) mode setting, at
80 MHz. The best-throughput fixed setting is observed when
User 1, User 2 form an MU-MIMO group, while User 3 is
served in SU-MIMO mode. For this group assignment, the
best fixed rates are MCS 5, MCS 7, MCS 9 for User 1, 2
and 3 respectively. Fig. 11(a) shows that MUSE gives the
same throughput performance as the optimal fixed setting,
by selecting the best group and rate, at runtime. MUSE
does not suffer from inter-user interference and presents al-
most zero PER, as shown in Fig. 11(b) (each point in the
CDF is per-user PER collected in 200ms windows). It gives
46.5% – 61% per-user gains over Legacy-US which suffers
from group thrashing, and 13.5% – 41.2% over SU-MIMO
mode where channel is time-shared among users.

MUSE outperforms PUMA with per-user throughput gains
from 8.5% to 105.2%. Although PUMA identifies best-throughput
MU-MIMO groups, it selects PHY rates lower than the op-
timal. Specifically, PUMA selects MCS 5 for all the users,
while the best-throughput rates for users 2, 3 are MCS 7,
MCS 9, respectively. This is because PUMA over-estimates
inter-user interference, and computes an SINRpuma value
that is lower than the real SINR. Although PUMA’s PER is
negligible (cf. Fig. 11(b)), its PHY rate under-selection leads
to poor throughput performance.

6.2 Controlled Experiments
We further evaluate MUSE, Legacy-US and PUMA in

multiple controlled, interference-free settings. In all our ex-
periments, 3 smartphone users are placed at multiple spots
as shown in Fig. 1 and are connected to AP1. The results
presented here are averaged over multiple runs.
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distribution. (c) UDP gains in static settings. (d) UDP gains in dynamic settings.
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Figure 12: Analysis of MUSE in “high gain” scenario. (a) PER distribution. (b) PHY rate distribution. (c) Frame aggregation.

UDP traffic: We first evaluate MUSE performance for
UDP traffic. Fig. 11(c) shows the throughput gain distribu-
tion of MUSE w.r.t. Legacy-US and PUMA for static users.
MUSE always performs similar or better than the other
designs, with up to 61.9% and 88.7% aggregated through-
put gains over Legacy-US and PUMA, respectively. The
median aggregated throughput gains over Legacy-US and
PUMA are 7.2% and 76.2%, respectively. Certain users may
suffer more from high inter-user interference, and per-user
throughput gains can be higher (up to 253% over PUMA).

We further evaluate MUSE in more dynamic controlled
settings, by moving the 802.11ac smartphones around, and
by having people moving in certain patterns. Fig. 11(d)
shows the throughput gain distribution of MUSE in such set-
tings. Our results show higher throughput gains of MUSE
over Legacy-US in dynamic, compared to static settings. For
example, MUSE median and max aggregated throughput
gains over Legacy-US are 28.9% and 132.7%, respectively.
This is attributed Legacy-US’s limitations to identify the
best MU-MIMO group and to converge fast to the best rate.
On the other hand, PUMA can converge faster to the best
setting since it requires one per-user SINR estimation to se-
lect the best group and rate, while Legacy-US uses historical
PER statistics. Interestingly, for a small number of cases we
observe PUMA to converge faster to the best setting than
MUSE, and to perform slightly better (cf. Fig. 11(d)).

We seek to get more insights about MUSE performance,
by further analyzing the dynamic scenario where MUSE
gives the highest aggregate throughout gains over Legacy-
US (132.7%) and PUMA (128%). In this scenario, a user is
located at spot H (cf. Fig. 1), while 2 users are moving in
a trajectory around H. MUSE achieves these gains by se-
lecting inter-user interference-free MU-MIMO groups, and
avoid transmitting at rates above the best-throughput ones.
This is shown in PER distribution of Fig. 12(a), where each
point in the CDF is the per-user PER collected in 200ms
windows. MUSE median PER is zero and only in 2% of the
samples its PER exceeds 10%. Legacy-US cannot adapt to
dynamic environment changes and gives a median and max.
PER of 9% and 80.2%, respectively. High PER in Legacy-

US affects its ability to identify the best rate, as shown
in the aggregated (from all users) rate distribution of Fig.
12(b). We observe Legacy-US to transmit more than 52%
of the frames at the two lowest rate options, while MUSE
transmits approximately only 10% at these rates. Finally,
PUMA inter-user interference estimation is a function of the
transmit/receive antennas and never changes with the en-
vironment. Consequently, it may underestimate inter-user
interference, which results in up to 93% PER (Fig. 12(a)).
PUMA’s lack of adaptivity to the changing environment is
shown in Fig. 12(b), where PUMA users transmit 70% of
their frames at only two rate options, despite the highly dy-
namic environment.

Interestingly, our results uncover two “side” benefits of
MUSE over Legacy-US and PUMA, related to MPDU frame
aggregation, and channel bandwidth adaptation, which highly
affect 802.11ac network’s performance.
Frame aggregation: The frame aggregation is a key mech-
anism to amortize protocol overheads, by sending more data
in a single transmission. Our results show that MUSE can
achieve much higher aggregation levels (i.e., number of MP-
DUs inside an A-MPDU) than Legacy-US and PUMA. Fig.
12(c) shows the aggregation level distribution of the different
designs, in the dynamic setting described above (each point
is the per-user average aggregation level in 200ms windows).
We observe MUSE and Legacy-US median aggregation levels
to be 32 MPDUs and 6 MPDUs, respectively. MUSE slightly
outperforms PUMA as well. MUSE higher aggression level
is attributed to its lower PER compared to the other de-
signs. 802.11 aggregation algorithm uses a TCP-like sliding
window to aggregate MPDUs. This window moves forward
as long as the MPDUs with sequence numbers inside it have
been acknowledged. High PER can affect this window from
moving forward, as it has been shown in [19].
Bandwidth adaptation: The channel bandwidth adapta-
tion algorithm implemented in our AP, immediately switches
to lower bandwidths upon high PER, since it attributes
these losses to external interferences (e.g., hidden terminals).
It will switch to higher bandwidths when PER becomes low.
Inter-user interference from erroneous MU-MIMO group and
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Algorithm

Comparison

Gain (%)

Distribution

Static Dynamic

Aggregate Per User Aggregate Per User

vs. Legacy-US

Max. 32.2 60.6 80.3 202.8

Median 12.6 17.5 47.0 96.2

Min. 0.3 10.5 25.7 39.5

vs. PUMA

Max. 82.3 95.3 70.2 120.4

Median 20.1 25.2 29.5 40.5

Min. 2.4 8.4 -4.2 -10.5

PHY rate selection can increase PER, which will be falsely 
attributed to external interference factors and will drop chan-
nel bandwidth. We illustrate this problem in Fig. 13(a), 
which shows channel bandwidth distribution of the evalu-
ated designs, in dynamic scenario described above. We ob-
serve MUSE to transmit the vast majority of the frames 
(74%) at 80 MHz, compared to other designs which show a 
lower bandwidth distribution. We further evaluate MUSE 
bandwidth adaptation in Section 6.4.
TCP traffic: We next compare the different designs for 
downlink single-stream TCP flows, in the same static and 
dynamic settings, as in UDP case. Table 1 summarizes 
MUSE throughput gains. Our results show higher median 
throughput gains of MUSE over Legacy-US for both aggre-
gated and per-user cases. We attribute these higher gains to 
the negative impact of Legacy-US high PER to TCP con-
gestion control. Similarly, MUSE median aggregated, and 
per-user throughput gains over PUMA are approximately 
9% higher than the UDP case, in dynamic settings. How-
ever, in static scenarios, MUSE gains over PUMA drop due 
to stable channel.
Video: We evaluate the designs’ performance for video 
traffic. In our scenario, a user roaming near the AP, streams 
a HD (1080p30) quality video, while two users are static 
and receive UDP traffic. We often observe video stalls for 
Legacy-US and PUMA due to video frame losses, particu-
larly when group thrashing happens. Dropped video frames 
can miss their decoding (and display) deadlines. In addition, 
bit-rate adaptation affects the quality of the received video 
frames, thus affecting their PSNR. In Fig. 13(b) we show the 
average (and max./min.) frame deadline miss, and the video 
PSNR for the different algorithms. Legacy-US and PUMA 
show up to 65% and 35% higher deadline miss over MUSE. 
Further, MUSE achieves on average 9.6 and 20.5 dB higher 
PSNR than PUMA and Legacy-US respectively. 
Fairness: We further compare the different designs in terms 
of throughput fairness. In Fig. 13(c), we present the Jain 
Fairness Index distribution (in terms of throughput), for all 
the settings presented above. Each point in the CDF is the 
fairness index at one setting. Index value of 1 implies per-
fect fairness. While MUSE fairness never drops below 0.9, in 
40% and 35% of the settings, Legacy-US and PUMA have a 
Jain index lower than 0.9, respectively. The lower fairness of 
Legacy-US and PUMA is attributed to their erroneous MU-
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Figure 14: Performance in field-trials. (a) Aggregate
throughput per AP. (b) Gain scaling (error bars represent
maximum and minimum values).

MIMO grouping, where inter-user interference often affects
only a subset of the three users of a group. These users typi-
cally get lower throughput than the others. MUSE does not
always get perfect fairness, since our AP has been designed
to provide air-time (and not throughput) fairness. So, users
located far away from the AP get the same air-time, but
achieve lower throughput that the ones closer to the AP.

6.3 Field Trial
We next evaluate MUSE in realistic field trials, where var-

ious sources of dynamics coexist in a complex manner. We
setup 4 APs (AP1 - AP4), (see Fig. 1 - AP4 is outside the
floorpan), and we connect 15 smartphones to them. We gen-
erate downlink traffic from the APs to the users; 10 users
receive UDP, 4 users receive single-stream TCP, and 1 user
downloads video traffic. All the users are static for AP3 and
AP4, while for each of the AP1, AP2, two users are mov-
ing at pedestrian speed. We perform our experiments dur-
ing working hours, where many people are walking around.
Apart from our APs, we detect 58 other APs (radios) dur-
ing our experiments, where 26 of them operate on the 5 GHz
band. These APs switch channel periodically and often op-
erate on channel 149, which is used by our 802.11ac APs.

We perform 15-minute experiments for multiple runs, and
we compare MUSE performance with Legacy-US and PUMA.
Fig. 14(a) shows the designs’ aggregate throughput for each
AP. We observe MUSE throughput gains to be 29% - 46.5%
and 17.2% - 28.6% over Legacy-US and PUMA respectively,
for AP1, AP3 and AP4. MUSE throughput gains can go up
to 54.8% and 61.4% over Legacy-US and PUMA for individ-
ual users. All the designs perform the same at AP2. This is
attributed to the high multi-path richness of the area around
AP2 (many objects located in this area), that makes all the
designs to operate at MU-MIMO with appropriate grouping,
which overall performs well.

Further, we vary the number of users connected to a single
AP to understand the gain scaling of MUSE w.r.t. Legacy-
US and PUMA. We place the AP to 8 arbitary locations in
the floorplan (Fig. 1) and for each locations, we connect up
to 12 static and mobile users. Fig. 14(b) shows the aggre-
gate throughput gain (%) of MUSE w.r.t. Legacy-US and

Table 1 : TCP throughput gains in various settings.
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(a) Throughput comparison in multiple topologies. (b) Dis-
tribution of throughput gap between MUSE and optimal.

PUMA. MUSE achieves up to 96.2% aggregate gain com-
pared to Legacy-US. While the aggregate gain is only up to
51% w.r.t. PUMA, per-user gain can go up to 197.8% within
the experimental setting.

6.4 Comparison with Optimal User Selection
We finally compare MUSE with an optimal user selection

algorithm, which leverages full CSI and applies an exhaus-
tive search to identify the best groups. We evaluate MUSE
with its bandwidth adaptation module (cf. Sec. 4.3) turned
on and off5. Since the optimal algorithm requires full CSI
which is not supported by 802.11ac APs, we use trace-driven
emulation instead. We first collect CSIs from users located
in multiple spots (Fig. 1). We then emulate multiple topolo-
gies, each containing 10 randomly located users, connected
to one AP. For a given topology, we emulate bandwidth
heterogeneity by randomly selecting a bandwidth option for
each user. The scatter plot 15(a) compares optimal and
MUSE aggregated throughputs, where each point represents
one topology. As we further show in Fig. 15(b), the through-
put gap between optimal and MUSE is less than 25 Mbps
in 80% of the topologies, when the bandwidth adaptation
is on. This corresponds to at most 21% throughput loss in
80% of the topologies and a median loss of only 12%. Note
that our emulation does not count the overheads of feeding
full CSI back to the AP. Hence, we expect this throughput
loss to be much smaller in reality. Fig. 15(b) further shows
the performance gains from MUSE bandwidth adaptation.
Upon disabling the bandwidth adaptation module, median
throughput gap between optimal and MUSE grows from 15
Mbps to approximately 60 Mbps. The median throughput
loss after disabling MUSE bandwidth module is 59%, in con-
trast to 14% in adaptation enabled case.

7. RELATED WORK
MU-MIMO user selection: The theoretical capacity of
MU-MIMO systems has been widely studied [5,27], and can
be realized when full receiver’s CSI is available at the AP.
There are multiple algorithms that leverage CSI to perform
MU-MIMO user selection [3–7, 25]. However, communicat-
ing full receiver’s CSI to the AP incurs large overheads,
which grow with the number of OFDM subcarriers and the
number of transmitter-receiver antenna pairs [8]. To reduce
such overhead, one approach is the quantization (compres-
sion) of the CSI feedback [5, 7, 8]. For example, AFC [8]
quantizes CSI 3 dimensions: time, frequency and numerical
values. Alternatively, the AP can collect of CSI less fre-
quently, from limited number of users [9, 25, 28]. Finally,
recent proposals [10] seek to reduce various protocol over-
heads, such as long 802.11 MU-MIMO contention periods.

5When bandwidth module is off, MUSE buckets users of
same bandwidths, and runs greedy search on each bucket.

All the above approaches require users’ full CSI feedback
and are not directly applicable to 802.11ac systems. How-
ever, MUSE can still leverage these algorithms to further
reduce sounding overheads.

Recent proposals seek to perform user selection without
CSI. PUMA [13] selects the best MU-MIMO group, using a
theoretical MU-MIMO capacity scaling model. Our exper-
iments showed that PUMA cannot properly capture inter-
user interference in practical settings. Argos [29] applies im-
plicit beamforming, where uplink pilots are used for down-
link beamforming. Different from Argos, 802.11ac supports
only explicit beamforming. Finally, Signpost [30] evades CSI
by broadcasting predefined orthogonal vectors. Signpost ap-
plies only to uplink MU-MIMO, which is not supported by
802.11ac.
Rate adaptation in MU-MIMO: Rate adaptation has not
been widely explored in 802.11ac. The most relevant work
to ours is TurboRate [31], a cross-layer RA design for uplink
MU-MIMO that requires customized MAC/PHY function-
alities. To our knowledge, our study is the first to show the
joint effect of user selection and RA in 802.11ac systems.
Distributed MU-MIMO: The distributed MU-MIMO al-
lows multiple APs operating on the same channel, to trans-
mit concurrently to multiple receivers, without interfering
with each other [32–34]. Such solutions require synchro-
nization among APs. Different from these efforts, MUSE
is a fully distributed design, which operates at a single AP.
MIDAS [35] is a distributed antenna system which seeks
to leverage the full potential of 802.11ac MU-MIMO net-
works. Different from MUSE, MIDAS selects MU-MIMO
users based on their antenna preference (based on the av-
erage signal strength) and fairness. Finally, systems such
as Geosphere [11] propose modifications in the PHY layer
to minimize errors from interference among MIMO streams.
MUSE is fully implemented in MAC, and does not require
any modifications in PHY layer.

8. CONCLUSION
In this paper, we use commodity 802.11ac APs to study

MU-MIMO user selection protocols. Our results show that
the limited feedback provided by 802.11ac users, the het-
erogenous bandwidth users and the limited-resource APs,
pose significant challenges in designing and implementing
such protocols. To this end, we propose MUSE, a new
user selection framework, which leverages the limited com-
pressed beamforming feedback from 802.11ac users, to iden-
tify the best-throughput MU-MIMO groups. MUSE can in-
crease the MU-MIMO grouping opportunities by jointly ad-
justing the channel bandwidth with user selection. MUSE
is lightweight and portable to resource-constraint APs, by
leveraging a new firmware-kernel interaction architecture.
Our work is the first to optimize MU-MIMO performance
in 802.11ac commodity devices, and we consider it as an
important milestone to design the future 802.11ax and 5G
wireless networks.
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