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Figure 1: (a) MilliDrone platform with a mmWave transceiver mounted on a DJI Matrice 100 Drone. (b) Examples of in-flight data
collected: Depth images; Greyscale images; mmWave reflections across 12 transmit-receive channels.

ABSTRACT
Millimeter-Wave (mmWave) networks rely on small, short-range
base-stations called “picocells,” which should be placed optimally to
be effective. So, extensive surveying must be done in order to ensure
there is no significant capacity loss. Existing approaches to conduct
indoor surveying do not work outdoors due to many outdoor environ-
mental factors. In this work, we propose MilliDrone, a Drone-based
system equipped with a mmWave transceiver and a Guidance plat-
form, and is synchronized to collect depth, greyscale, and mmWave
reflection profiles by following a specified programmed path. Using
the datasets, we intend to explore a machine-learning model to pre-
dict outdoor propagations, and in turn, predict the optimal outdoor
picocell placements.

CCS CONCEPTS
• Hardware → Sensor devices and platforms; • Networks → Net-
work management.
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PROPAGATION SURVEY CHALLENGES
The increasing prevalence of 5G has raised the importance of opti-
mally placed network infrastructures. 5G utilizes millimeter-wave
(mmWave) as its core wireless technology, and it relies on small,
short-range base-stations called “picocells,” which are easily ob-
structed by environmental objects. Picocells can be placed on rooftops,
utility poles, and other roadside infrastructures, but they must be
placed with careful planning, as even minor location changes can
cause significant capacity loss. So, identifying the optimal placement
locations of these picocells requires extensive surveys.

While there exist approaches to conduct indoor surveys, they are
ineffective outdoors due to variable factors, such as the height and
number of buildings, traffic, pedestrians, area inaccessibility, etc. It
is also expensive and cumbersome to manually survey large-scale
outdoor environments. To solve these issues and facilitate efficient
outdoor picocell placement, we propose MilliDrone, a system com-
prising of a Drone equipped with a mmWave transceiver, optical
cameras, and depth sensors (Figure 1[a]). MilliDrone is especially
useful when surveying areas with many tall buildings that often do
not have the infrastructure for a traditional survey.

MILLIDRONE SYSTEM DESIGN
MilliDrone can be programmed to fly in any specific pattern while
avoiding obstacles. The system comprises a 77 GHz mmWave
transceiver mounted on a DJI Matrice 100 Drone and a Guidance
System [1]. We use the onboard SDK to control the Drone’s flying
path and the Guidance SDK to capture both the RGB and Depth
(RGB-D) images and odometry samples. The mmWave transceiver
is equipped with 3 transmit and 4 receive antennas, enabling us to
continuously measure reflection profiles from 12 virtual channels at
any 3D pose.

However, a tight hardware-level synchronization between the
Drone, Guidance System, and mmWave transceiver is currently un-
available. Nevertheless, the collected RGB-D images, Drone’s poses,
odometry samples, and mmWave reflections must be synchronized
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for correct data analysis. To this end, MilliDrone post-processes
the data to facilitate a software-level synchronization by carefully
considering the start and end times for each system and using the
difference to offset the data. Still, the sampling rates between the
systems may not match, and some may capture samples at irregular
intervals (e.g., the transceiver has 25 fps, but the depth imager has
only 6 fps). To overcome these challenges, we use a combination of
interpolation and decimation to match rates across systems; in prac-
tice, median decimation and piecewise cubic interpolation methods
yield good results. We collected datasets across 4 outdoor environ-
ments, and Figure 1(b) shows the depth, greyscale, and mmWave
reflection profiles from two poses in one environment. The reflection
data also shows that the outdoor mmWave signals are highly sparse.

In the future, we plan to collect datasets from multiple, large-scale
outdoor environments. Still, we may not be able to gather data from
every nook and cranny of an environment due to the Drone’s limited
battery and area inaccessibility. We propose to explore a machine-
learning model that exploits the correlation between visual data

and mmWave reflections (similar to [2, 3]) to predict the outdoor
propagations characteristics from any viewpoint, even if the Drone
has not measured them. In addition, we plan to extend the Drone’s
field of view to 360◦ by mounting multiple mmWave transceivers and
RGB-D cameras. Besides, we will investigate methods to calibrate
the dataset by modeling Drone’s vibration and removing potential
spiking noise due to abrupt flight pattern change (for example, under
a gust of wind).
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