A Case for Temperature-Aware Scheduler for Millimeter-Wave Devices and Networks

Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi

(<u>cse.sc.edu/~msaadat/</u>)

University of South Carolina

The 28th IEEE International Conference on Network Protocols (IEEE ICNP 2020), Madrid, Spain, 2020¹ Why Millimeter-Wave for 5G?

Device overheating under Millimeter-Wave

Outline

Thermal characterization

Aquilo: A multi-antenna scheduler

Summary and Conclusions

Why Millimeter-Wave for 5G?

New technology for 5G: The IoT reality

New technology for 5G: The IoT reality

New technology for 5G: high requirements

Immersive VR/AR

Autonomous car

5 ~ 6 Gb/s wireless speed with sub-10 millisecond latency

Locally generates more than 10 Gb/s *

* https://datacenterfrontier.com/autonomous-cars-could-drive-a-deluge-of-data-center-demand/

New technology for 5G: Millimeter-Wave

Device overheating in Millimeter-Wave networks

Millimeter-Wave challenges

Overheating in Millimeter-Wave devices

60 GHz Antenna

Reel from a thermal camera

Sped up by 30X, Total duration ~ 300 s

60 GHz ROG Smartphone

26.5C

60 GHz ROG smartphone overheating

Reports of mmWave device overheating

We Tested 5G Across America. It's Crazy Fast—and a Hot Mess In tests, the 5G often switched off due to summer heat, leaving our columnist to cool the devices with ice packs or air cond HOME > MOBILE > 56 MODEMS AND 5G Modem Handle the FI G For By Joel Hruska on July 15 **5G TESTING LAB** f y G+ 🖑 7 Hi there! I'm a 5G Testing Results: Pack Your Tent and Cooler conversational from Google Fi kind of phone r to switch to a r plan from the c home? I can he that 13

Device overheating: discomfort and network degradation

Devices used near face & brain, *e.g.* Smartphone, VR

High temperature —> high noise and leakage current

Potential health hazards

User discomfort

Fluctuation in throughput
Degraded network

Thermal characterization of Millimeter-Wave devices

60GHz measurement testbed

- Nighthawk X10 60 GHz AP
- ASUS ROG 60 GHz Smartphone

Device Features:

- ✓ IEEE 802.11ad compliant
- ✓ 32-element phased array antenna
- ✓ 2.16 GHz bandwidth
- ✓ 4.62 Gbps peak bit-rate

Performance degradation under temperature

Temperature increase in active state

Study of heat dissipation

Aquilo: Scheduler for multi-antenna devices

Inducing periodic idleness

Time

Inducing periodic idleness

Inducing periodic idleness

Latency and throughput requirements

Applications	<u>Max. Latency (ms)</u>	<u>Min. Throughput (Mbps)</u>
Virtual Reality	1 - 3	900 - 1100
Augmented Reality	~1	700-800
Real Time Gaming	10	10
Tactile Internet	~1	>1000

Source: L. Xu, "Context Aware Traffic Identification Kit (TriCK) for Network Selection in Future HetNets/5G Networks", 2017 International Symposium of Networks, Computers and Communications (ISNCC)

Multi-Antenna design

Millimeter-Wave Network Vulnerable to Rampant Signal Outage Multi-Antenna Design improves network reliability

Switch antenna based on *temperature-awareness*

Antenna switching over time

Antenna switching over time

Antenna switching over time

Simple antenna switching

- Random Switching
- Throughput Maximization

Antenna switching challenges

Millimeter-Wave link: Very unreliable

No guaranteed link at any antenna at all times

Temperature profile: Varies in space-time

No pre-determined temperature rise and fall model

Dissipation after a 10 s transmission

Design components of Aquilo

- Online thermal profile estimation
- Generating look-ahead schedules

Online thermal profile estimation

Generating look-ahead schedules

Schedule No	Schedule	Peak Temperature (°C)
1	{2, 3, 1, 4}	59
2	$\{1, 2, 1, 4\}$	62
3	{2, 1, 4, 3}	54
•••	•••	•••

Aquilo antenna execution sequence

Non-Adjacency Criteria

3 Slot System

Antenna Schedules:

No antenna can be scheduled in consecutive time slot

Performance Evaluation

Throughput Optimization vs. Aquilo

Evaluate Throughput Optimization

Throughput Optimization vs. Aquilo

Evaluate Aquilo

Throughput Optimization vs. Aquilo

Comparative schemes with Aquilo

- **Best Case:** Achieves the best temperature performance
- Random: An antenna is selected at random
- Random with NAC: Random with Non-Adjacency Criteria
- Throughput Opt.: Achieves the maximum throughput

Temperature performance

Throughput performance

Field trial of Aquilo

Field trial: Throughput performance

Field trial of Aquilo

Field trial: Temperature performance

Field trial of Aquilo

Summary and Conclusions

Problem and challenges

- Device overheating in mmWave poses health hazards and cause poor network performance
- Design is challenging unreliable network connectivity and nondeterministic temperature model

Aquilo Summary

- Thermal characterization of mmWave network: *first-of-its-kind*
- Aquilo: A scheduler for multi-antenna devices based on temperature-awareness
- Aquilo achieves chip temperature within 1°C of best temperature case while sacrificing only 10% throughput

A Case for Temperature-Aware Scheduler for Millimeter-Wave Devices and Networks

Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi

(cse.sc.edu/~msaadat/)

University of South Carolina

The 28th IEEE International Conference on Network Protocols (IEEE ICNP 2020), Madrid, Spain, 2020

Our work is sponsored by NSF, under grant no.: CNS-1910853