### MilliCam: Hand-held Millimeter-Wave Imaging

## Moh Sabbir Saadat; Sanjib Sur; Srihari Nelakuditi; Parmesh Ramanathan <u>https://cse.sc.edu/~sur/</u>





College of Engineering and Computing



### **5G Mass Deployment**

1.3 Billions

2023

Key enabling technology: Millimeter-wave





190 Million

subscribers

2020

1.9 Billions

2024

**10x** increase in 5G subscriptions within the next 4 years

> Source: Statista, 2020 - 2024

### Opportunity for New Internet of Things Applications Detecting finger movement Monitoring vital signs





#### Enabling sports analytics

#### Imaging concealed objects



### Imaging Concealed Objects: Applications





#### Hidden structure detection



Moisture detection



Inventory counting, Missing/damaged items detection



Contra-band detection

### Imaging Concealed Objects: Applications



# Can we bring these functionalities to commodity 5G smartphones?



Moisture detection



Inventory counting, Missing/damaged items detection



Contra-band detection

### **Constructing Millimeter-Wave Image**



mmWave antenna

Reflected signals

### **Constructing Millimeter-Wave Image**

Space (U)





Space (u)









### Challenges





### Challenges





### Hand-held Motion Error





#### Controlled movementbased mmWave image



Hand-held mmWave image





### **Error Correction for Hand-held Imaging**



### Challenges



### Challenges



### **Unknown Object Location**



#### Known object location

Unknown object location

### **De-focused Image with Unknown Location**



#### Camera image

mmWave image with Image with *known unknown* object location object location

















### Hand-held Experimental Platform



- Intel Galileo IoT platform + Qualcomm IEEE 802.11ad
- 64 beams at 60 GHz
- 2 GHz channel bandwidth
  = 0.5 ns timing resolution
- A repurposed off-the-shelf communication device

### Shape Discrimination

### **Shape Dimensions Estimation**



### Imaging Multiple Objects



### Imaging More Complex Object



Camera image



mmWave image



### MilliCam summary

#### Potentials and challenges of hand-held mmWave imaging

- \* Wide-bandwidth and small wavelength at millimeter-wave enable high precision see-through imaging.
- \* But, hand-held motion error and unknown object location can affect the image quality severely.

#### System summary

- \* MilliCam employs sensor-based error correction and iterative autofocusing to overcome the challenges.
- \* MilliCam is a first-of-a-kind system to enable high-quality see-through imaging on 5G devices.