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What Is 5G And Mmwave?

mmWave

Technology

Airport Security 

Scanner

Telecommunications

Remote 

Sensing
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Imaging Concealed Objects

Behind Wall Detection

Packaging and Inventory Airport Contra-band 

Scanner

mmWave 
antenna

Can we bring these functionalities to 

commodity 5G smartphones? 
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SquiggleMilli

Pistol inside bag
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SquiggleMilli

What vision camera produces

What SquiggleMilli produces

Actual Object
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SquiggleMilli

What vision camera produces

What SquiggleMilli produces

Actual Object



Constructing Millimeter-Wave Image
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Constructing Millimeter-Wave Image
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Constructing Millimeter-Wave Image

3D Spectrogram
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From Measured Signal to Image

FFT (t) FFT2D (x, y) X

p(t)*

IFFT3D (x, y, z)

Camera image 3D mmWave image

FFT: Fast Fourier 
Transform

IFFT: Inverse Fast 
Fourier Transform
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Challenges
Hand-held imaging

❑ Non-linear motion

❑ Non-Uniform Sampling

❑ Multiple Objects

Specularity and weak reflectivity
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SquiggleMilli Overview
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Challenges

Hand-Held Imaging 
Specularity and 

Weak Reflectivity
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Challenges

Hand-Held Imaging 
Specularity and 

Weak Reflectivity
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Non-linear Motion

Ideal GridSquiggle Grid
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Motion Error Compensation
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Missing Samples

Missing Samples Missing Samples Recovered

More than 50% samples are missing



Missing Samples Recovery

Motion 

Corrected

Samples

Recovered

Samples

Standard Compressed 

Sensing (CS) Technique

❑Compressed Sensing fails if data are correlated and wide

❑Visual-aid ensures randomness in data points collected

❑we also limit the range to 4 m to avoid wide problem as our 

application is targeted for short range

❑ Additionally, we use Density based clustering algorithm 

(DBSCAN) to separate objects in the scene

CS Customization
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Challenges

Hand-Held Imaging 
Specularity and 

Weak Reflectivity
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Specularity And Weak Reflectivity

Object surface acts like mirror and transmitted signal 

bounces off an angle it will not come back to the receiver

mmWave

Antenna
Object AObject B



Motivation To Use Machine Learning  

Conditional 

Generative 

Adversarial 

Networks (cGAN)

3D mmWave 

Image

Ground-Truth

Image

Epoch: 1

Difficult to 

Recognize

Shape
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Motivation To Use Machine Learning  

Conditional 

Generative 

Adversarial 

Networks (cGAN)

3D mmWave 

Image

Ground-Truth

Image

Epoch: 10

Learning 

real image

distribution
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Motivation To Use Machine Learning  

Conditional 

Generative 

Adversarial 

Networks (cGAN)

3D mmWave 

Image

Ground-Truth

Image

Epoch: 1000

Shape

Fully 

Recovered
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Motivation To Use Machine Learning  

Generator

3D mmWave 

Image

Post Training

25

Object is human perceptible
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Shape Recovery With SquiggleMilli
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Implementation

❑Start Frequency: 77.33 GHz

❑Effective BW: 3.22 GHz

mmWave Hardware

Co-located mmWave hardware and AR Camera
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Implementation

Squiggle Pose Collection 



Data Collection
Real Data Collection
❑Volunteers are asked to squiggle phone to collect pose data

❑Then, we place mmWave in precise mechanical controller 

❑It scans the area of 20 x 20 cm2

❑Apply pose to obtain the squiggle data set

❑To collect ground-truth 2D shape, we use co-located AR device

❑MmWave 3D image: 40x1000x236 => 32x64x96 

❑2D shape ground-truth: 128x256 depth image

❑Takes ~ 15 mins/sample

Real data collection is slow and ML needs lots of data, what can we do?

2918 LOS and NLOS Real Samples
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Data Collection
Synthetic Data Generation

❑Large data scales for mmWave are not available

❑We collected multiple 3D shapes from ShapeNet

❑We projected the image into 2D shape and apply different 3D rotation 

matrix to generate 3D voxel

❑3D voxel is then used in Ray Tracing Algorithm

❑Introduced various noises in simulation

❑It generates the mmWave image like the images generated by SAR 

Imaging Devices

❑Single simulation takes ~ 1.5 min in our PC (Intel Xeon @ 32 GB RAM)

9800 Synthetic Samples
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Evaluation

Hand-Held Imaging 
Specularity and 

Weak Reflectivity
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Evaluation

Hand-Held Imaging 
Specularity and 

Weak Reflectivity



33

Hand-held Imaging

Shape quality 

improved ~4 times
Scan Requirement 

Reduced by 30 

times 

Motion Correction CS Recovery
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Evaluation

Hand-Held Imaging 
Specularity and 

Weak Reflectivity
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Full Shape Recovery With SquiggleMilli

Human perceptible shape generated by Generator



Full Shape Recovery With SquiggleMilli

Median similarity to ground-truth is 90% for NLOS

LOS: Line of Sight

NLOS: None Line of Sight

Unseen: Objects not 

included in 

Training but looks like the 

Category of objects trained
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Object Classification

Objects are selected which are use used in TSA Screening

Objects are correctly classified to respective classes
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Field Trials

Human perceptible shape even when object is occluded

Pistol semi-occluded

Pistol fully-occluded

Scissors semi-occluded



39

Field Trials

Achieved 72% shape similarity with 

just 3.2 pts/cm2 scan density
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Conclusion

❑SquiggleMilli brings high-resolution, through-obstruction imaging into 

cheap, ubiquitous mobile devices

❑SquiggleMilli improves the shape to make human perceptible using 

machine learning techniques

❑SquiggleMilli efficiently can adapt into different objects with limit number 

of samples for training

Thank you!
Please check out our paper for more results: 

https://github.com/hregmi77/SquiggleMilli

Any Questions: Please email to hregmi@email.sc.edu

https://github.com/hregmi77/SquiggleMilli

