2021UBİCOMP 202İSWC

SquiggleMilli: Approximating SAR Imaging on Mobile Millimeter-Wave Devices

Hem Regmi, Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi

https://github.com/hregmi77/SquiggleMilli

Contact: hregmi@email.sc.edu

College of Engineering and Computing

Number of 5G subscriptions in North America from 2018 to 2026 (in millions)

5G subscriptions in North America 2018-2026

Source: Statista

What Is 5G And Mmwave?

Imaging Concealed Objects

Behind Wall Detection

Packaging and Inventory

Airport Contra-band Scanner

SquiggleMilli

Pistol inside bag

SquiggleMilli

What vision camera produces

SquiggleMilli

What vision camera produces

What SquiggleMilli produces

Actual Object

Constructing Millimeter-Wave Image

 σ_{a}

 σ_n

Reflected signals

 σ_1

mmWave antenna

p(t)

Constructing Millimeter-Wave Image

Space (u)

Time (t)

Constructing Millimeter-Wave Image

Χ

3D Spectrogram

Y

Challenges

Hand-held imaging

Non-linear motion
 Non-Uniform Sampling
 Multiple Objects

Specularity and weak reflectivity

SquiggleMilli Overview

Challenges

Hand-Held Imaging

Specularity and Weak Reflectivity

Hand-Held Imaging

Specularity and Weak Reflectivity

Non-linear Motion

Squiggle Grid

Ideal Grid

Motion Error Compensation

Missing Samples

Missing Samples

Missing Samples Recovered

More than 50% samples are missing

Missing Samples Recovery

CS Customization

Compressed Sensing fails if data are correlated and wide
 Visual-aid ensures randomness in data points collected
 we also limit the range to 4 m to avoid wide problem as our application is targeted for short range
 Additionally, we use Density based clustering algorithm (DBSCAN) to separate objects in the scene

Challenges

Hand-Held Imaging

Specularity and Weak Reflectivity

Specularity And Weak Reflectivity

Object surface acts like mirror and transmitted signal bounces off an angle it will not come back to the receiver

Motivation To Use Machine Learning

3D mmWave Image **Ground-Truth** Image **Epoch: 1**

Conditional Generative **Adversarial Networks (cGAN)**

Difficult to Recognize Shape

Motivation To Use Machine Learning 3D mmWave Image Conditional Generative 20 -40 -**Adversarial Ground-Truth Networks (cGAN)** 100 200 Image Learning real image Epoch: 10 distribution

Motivation To Use Machine Learning

3D mmWave Image Conditional Generative **Adversarial Ground-Truth Networks (cGAN)** Shape Image Fully **Epoch: 1000** Recovered

Post Training

Object is human perceptible

Shape Recovery With SquiggleMilli

Implementation

mmWave Hardware

■Start Frequency: 77.33 GHz ■Effective BW: 3.22 GHz

Co-located mmWave hardware and AR Camera

Implementation

Squiggle Pose Collection

Data Collection

Real Data Collection

Volunteers are asked to squiggle phone to collect pose data
 Then, we place mmWave in precise mechanical controller
 It scans the area of 20 x 20 cm²
 Apply pose to obtain the squiggle data set

To collect ground-truth 2D shape, we use co-located AR device
MmWave 3D image: 40x1000x236 => 32x64x96
2D shape ground-truth: 128x256 depth image
Takes ~ 15 mins/sample

2918 LOS and NLOS Real Samples

Real data collection is slow and ML needs lots of data, what can we do?

Data Collection

Synthetic Data Generation

Large data scales for mmWave are not available
 We collected multiple 3D shapes from ShapeNet

- We projected the image into 2D shape and apply different 3D rotation matrix to generate 3D voxel
- □ 3D voxel is then used in Ray Tracing Algorithm
- □Introduced various noises in simulation
- It generates the mmWave image like the images generated by SAR Imaging Devices

□Single simulation takes ~ 1.5 min in our PC (Intel Xeon @ 32 GB RAM)

9800 Synthetic Samples

Evaluation

Hand-Held Imaging

Specularity and Weak Reflectivity

Evaluation

Hand-Held Imaging

Specularity and Weak Reflectivity

Hand-held Imaging

Motion Correction

Shape quality improved ~4 times

CS Recovery

Avg. Scan Density of Squiggle Path (Pts/cm²)

Scan Requirement Reduced by 30 times

Evaluation

Hand-Held Imaging

Specularity and Weak Reflectivity

Full Shape Recovery With SquiggleMilli

Camera image

2D Ground-truth Shape

35

Human perceptible shape generated by Generator

Full Shape Recovery With SquiggleMilli

Median similarity to ground-truth is 90% for NLOS

Object Classification

Actual/Predicted	Boxcutter	Cellphone	Explosive	Hammer	Knife	Pistol	Scissor	Screw	Other
Boxcutter	94	0	0	0	0	0	1	0	5
Cellphone	0	69	0	4	0	2	0	0	25
Explosive	0	0	85	8	0	0	0	0	7
Hammer	0	0	0	93	0	0	3	0	4
Knife	5	0	0	0	67	0	8	0	20
Pistol	2	0	0	0	0	87	2	1	8
Scissor	0	0	0	0	0	0	100	0	0
Screw	0	0	0	3	0	0	19	45	33
Other	0	0	19	6	0	21	2	0	52

Objects are selected which are use used in TSA Screening Objects are correctly classified to respective classes

Field Trials

Camera image

Pistol semi-occluded

Pistol fully-occluded

Scissors semi-occluded

³⁸ Human perceptible shape even when object is occluded

Field Trials

Conclusion

SquiggleMilli brings high-resolution, through-obstruction imaging into cheap, ubiquitous mobile devices

Thank you!

Please check out our paper for more results: https://github.com/hregmi77/SquiggleMilli

Any Questions: Please email to hregmi@email.sc.edu