Bringing Multi-Antenna Gain to Energy-Constrained Wireless Devices

Sanjib Sur, Teng Wei, Xinyu Zhang

University of Wisconsin - Madison

Power Consumption of MIMO

- MIMO boosts the wireless throughput by using parallel transmission (multiplexing gain) and redundancy (diversity gain)
- Each antenna needs an active RF chain consisting of power amplifier, ADC/DAC etc.

• Power consumption ∞ # of active antennas

Power Consumption of MIMO

Device power consumption (W)								
Madas		Atheros	Intel	Linksys				
141 (Jues	9380	5300	AE3000				
Sleep		0.13	0.22	0.15				
	1	0.68	1.27	0.84				
Rx Idle	2	0.80	1.39	0.96				
	3	0.94	1.53	1.10				
D	1	1.38	1.34	0.83				
KX data	2	1.42	1.48	1.31				
uata	3	2.06	1.65	1.60				
т	1	1.44	1.44	0.87				
data	2	1.46	1.50	1.35				
	3	2.09	1.99	1.92				

WiFi

Will energy per bit of MIMO be higher or lower than SISO?

Power Consumption of MIMO

 If TX (RX) time is roughly 10%, the energy cost per-bit compared with SISO,

$$1.3 \times 80\% + \frac{2.2}{3} \times 10\% + \frac{2}{3} \times 10\% = 1.2 \times 10\%$$
Idle Tx Rx

- Energy efficiency of MIMO is worse than SISO
- Can we achieve similar capacity gain as MIMO but with similar energy efficiency as SISO (using one RF chain)?

Our Design: Halma

 Data are transmitted sequentially over different antennas – Antenna Index Coding (AIC)

Create an extra data stream by the antenna hopping

Feasibility

 Intuitively, each transmit antenna has unique channel signature(magnitude+phase), which distorts the original constellation

Feasibility experiment

Ant. Idx	1	2	3	4	
1	97.55	2.07	1.44	1.31	
2	2.00	93.97	1.44	1.81	
3	1.38	1.54	95.87	1.34	
4	1.32	2.04	1.07	95.54	

Accuracy of antenna identification

Antenna Index Coding (AIC): ZigBee

 Theoretical capacity gain using sub-symbol level AIC: 1 + 32log₂(#of_antenna)/Antenna_hopping_freq

 For 2 antennas and antenna hopping every 8 samples: Capacity gain = 5x

Antenna Index Decoding: ZigBee

- Matching to the pattern of channel distortion
 - Insert chip template after legacy ZigBee preamble

Antenna 1	ZigBee preamble	Chip temp		Data payload	$\left(\right)$	\rangle
Antenna 2	ZigBee preamble		Chip temp	Data payload	$\left(\right)$	\rangle

- Decode data symbol using correlation
- Decode antenna index by matching symbol distortion to templates
- More considerations to improve decoding reliability
 - Variations of channel signature caused by noise
 - Lack of sample-level synchronization in legacy ZigBee
 - Starting positions of data symbols and chip template are not aligned

Antenna Index Coding (AIC): WiFi

OFDM modulates data symbols in the frequency domain

- AIC in WiFi
 - Time domain samples are not separable
 - Perform AIC in the frequency domain

Antenna Index Decoding: WiFi

- Similar to the ZigBee template
 - Reuse packet preamble format from 802.11n

- Different from the ZigBee
 - Received packet is fully synchronized
 - Have both channel magnitude and phase pattern w.r.t each TX antenna

Adaptive Antenna Hopping (AAH)

- Why do we need this MAC level mechanism? Overall_bitrate = Antenna_hopping_rate + Data_rate
 - Channel conditions should be as *dissimilar* as possible
 - But, antennas with highly disparate gains (very high and very low SNR) will reduce overall throughput
- AAH: Adaptively choose antenna set that maximizes throughput

Model-based Antenna Evaluation

Evaluate quality (throughput) of a given antenna subset

- Dissimilarity = Euclidean "distance" of channel signatures
- Data symbol SNR (effective SNR*)
- Model the throughput

Expect_error_bit_numbe

- Throughput = \mathcal{F}(pkt_rate, pkt_size, Avg_error)

Implementation and Evaluation

- Prototype Halma on the WARP software radio platform
- Realize Halma for both ZigBee and for WiFi.
 - Modified PHY layer to include antenna templates
 - Antenna index coding and decoding
 - Trace-based MAC for adaptive antenna hopping
- Evaluate in a testbed with 6 WARP boards.
 AP is equipped with up to 8 antennas.

Performance: Throughput Gain

- ZigBee: 3.1x, 4.7x and 6.4x throughput gain with 2, 4 and 8 antennas!
- WiFi: 1.3x throughput gain with 4 antennas with BPSK modulation

Performance: Adaptive Antenna Hopping

- Throughput model closely approximates the oracle
- Outperform SISO for more than 80% locations
- 30% improvement compared to using all antennas

Performance: Energy Saving

- ZigBee: Save energy per bit by more than 50%
- WiFi: Reduce energy consumption by 25% over MIMO

Conclusion

- Explore the feasibility of bringing multi-antenna benefits to single RF-chain wireless devices.
- Adaptive antenna hopping mechanism to ensure robustness and efficiency of communication.
- Capacity can scale super-linearly with # of antennas.
 Power consumption remains similar to SISO.
 Energy-per-bit much lower than SISO and MIMO.

Thank you!