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ABSTRACT
We propose Argus, a system to enable millimeter-wave (mmWave)
deployers to quickly complete site-surveys without sacrificing the
accuracy and effectiveness of thorough network deployment sur-
veys. Argus first models the mmWave reflection profile of an envi-
ronment, considering dominant reflectors, and then uses this model
to find locations that maximize the usability of the reflectors. The
key component in Argus is an effective deep learning model that
can map the visual data to the mmWave signal reflections of an en-
vironment and can accurately predict mmWave signal profile at any
unobserved locations. It allows Argus to find the best picocell loca-
tions to provide maximum coverage and also lets users self-localize
accurately anywhere in the environment. Furthermore, Argus al-
lows mmWave picocells to predict device’s orientation accurately
and enables object tagging and retrieval for VR/AR applications.

We implement and validate Argus on two different buildings
consisting of multiple different indoor environments. However, the
generalization capability of Argus can easily update the model for
unseen environments; so, Argus can be deployed to any indoor
environment with little or no model fine-tuning.

CCS CONCEPTS
• Networks → Network management; • Computing method-
ologies → Neural networks.
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1 BACKGROUND AND MOTIVATION
Millimeter-wave is the core technology for the new wireless LAN
and cellular standards, such as IEEE 802.11ay [1] and 5G NR [2], and
the key enabler for many high throughput and ultra-low latency
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wireless applications. Millimeter-wave (mmWave) networks offer a
substantially higher data rate than the traditional wireless networks,
but the communication is limited to Line-Of-Sight (LOS) path and
very few reflections in Non-LOS (NLOS) paths [3, 4]. So, the network
relies on light-weight, short-range, and densely deployed base-
stations called “picocells,” which use electronically steerable beams
and communicate on very high frequency, on the order of tens
of GHz, and wide bandwidth. Due to the short wavelength, each
picocell can host multiple palm-sized antenna arrays that can create
hundreds of beams to serve mobile users. With such capabilities,
the picocells and mobile devices can also function as high-precision
environment sensors.

But the short wavelength, high signal attenuation, and environ-
mental obstructions of mmWave links often yield unavailability or
misalignment of the paths, which makes the performance of the pic-
ocells unpredictable [5–7]. Picocells can electronically steer beams
to track their paths and coordinate among neighboring picocells to
enable robust connectivity. But the effectiveness of coordination
and adaptation depends on whether the neighbors can support
reliable connectivity since their links are also sensitive to the en-
vironmental structure [8–10]. While it is not always feasible to
transform the environment to aid the picocells (e.g., by adding more
reflectors), a network deployer can place the picocells smartly to
improve the NLOS paths availability and thereby improve the pre-
dictability of mmWave links. Full site surveys may achieve this goal
by war-driving a mmWave transceiver and measuring the Signal
Reflection Profile (SRP) from every nook and cranny, but they are
costly and time-consuming [11, 12]. Ray propagation-based simula-
tors may reduce the cost and time, but they are frequency-specific
since the NLOS signal reflectivity is frequency-dependent. So, it is
either costly or challenging to identify the mmWave SRP in a given
environment.

2 VISION AND LEARNING MODEL
We propose Argus, which explores a low-cost, visual data and deep
learning based approach to predict the SRPs in indoor mmWave pico-
cell networks.1 Prior approach based on channel sparsity and geo-
metrical propagation aimed to predict the reflection profiles in 60
GHz networks [8, 9], but the design has been tested and validated
only in a single indoor environment. However, the extreme den-
sity of mmWave picocells, ultra-wide bandwidth of links, lack of
coherency in hardware, and under-explored models of mmWave
channels across multiple environments limit the applicability of
sparsity or traditional signal processing. On the other hand, visual
data can extract higher resolution environmental information, and

1Argus was the Roman god of surveillance and watch, and the great vision and wisdom
of Argus is analogous to our proposed model with visual data and deep learning.
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deep learning can reveal complex models to tackle hard optimiza-
tion problems. At a high level, Argus builds a framework to identify
the mmWave SRP in an environment enabling network deployers
to quickly and efficiently complete site surveys without sacrificing
the accuracy and effectiveness of a thorough deployment survey.
Our approach is intuitive: Argus identifies deployment locations
that maximize a set of picocells’ likelihood of having reflection
paths; so, the network could be more effective and predictable in
a dynamic environment by virtue of not being dependent on only
the LOS path. The key idea is to first identify reflectors’ properties,
i.e., reflectivity, location, and orientation, to model the SRP of an
environment, and then use it to find the locations that maximize
the usability of the reflectors.

To identify the reflectors’ properties, Argus combines a visual
Point Cloud Data (PCD) and a few SRPs measured sparsely inside
the environment to build a deep learning model. Intuitively, visually
similar objects likely produce similar reflections; so, the learned model
could predict the signal reflection patterns from any other viewpoint
within the environment, even if the deployer has not measured them.
But training the model with the entire PCD will unlikely work
since it will learn the noise from random pixel colors and distances.
Besides, there are only a few objects in the environment that con-
tribute strongly to the mmWave SRP [9]. So, Argus extracts the
objects from the PCD within a limited FoV and uses prior knowl-
edge of object labels as training input. The trained model can then
be transferred to other environments which have similar structures,
such as walls, ceilings, beams, columns, floors, etc., with little to
no fine-tuning. Besides identifying effective deployment locations,
Argus can also use the predicted SRPs to enable several applications:
(a) Identifying user’s location or aiding robot navigation based on
the pre-characterized SRPs; (b) Classifying or tagging objects under
low-light conditions in VR/AR; (c) Adapting picocell’s data trans-
mission rate for different users; and (d) Uncovering “signal holes”
in the environment and facilitate mounting intelligent surfaces on
the walls to improve the SRP distributions [13].

3 RESULTS AND CONTRIBUTIONS
We implement and evaluateArgus by building a custom platform for
data collection. The setup uses an ASUS Zenfone AR smartphone
[14] to collect the PCD and poses of the device and a co-located 24
GHz mmWave transceiver [15] to collect the SRPs. Since it is hard
to trigger the mmWave transceiver and smartphone at the same
time due to various software-level delays, Argus post-processes the
SRP and visual data in software to achieve synchronization. Our
experiments across 16 indoor environments in two buildings over a
period of 5 months, with 11 GB of data (∼1.1 million samples), show
that by re-training Argus for individual environments, it can predict
the SRP with a median error of 1.5 dB and 90th percentile error of 4.2
dB only with a base learning model. But the base model, which only
considers the distance of the reflecting objects from the transceiver,
fails to generalize over other environments. When transferred and
tested in untrained environments, the median error is close to 12
dB, and the 90th percentile error could be up to 35 dB! Fortunately,
by incorporating the prior knowledge of the environment during
training, Argus is able to contain the error to only 6.2 dB on the
median. Furthermore, by predicting only important points of SRP,

Argus is able to identify the SRP with a median error of 4.5 dB for
completely unseen environments. For picocell deployment, Argus
is able to reduce the link outage probability in multiple environ-
ments by almost 1.55× compared to random and common-sense
deployment strategies. For localization and orientation, Argus’s
predication errors are less than 35 cm and 1.7◦, respectively, on all
axes for 90th percentile of measurements in diverse environments.
For object tagging, Argus can classify objects and retrieve them
with more than 98% accuracy.

In summary, we have the following contributions: (1) We design
a framework for visual data and deep learning augmented mmWave
signal reflection profile prediction. It includes the semantic under-
standing of the environment to make the model robust and effective
across multiple environments. Argus is the first system to enable
such accurate prediction for practical mmWave picocells. (2) We
design and evaluate methods for picocell deployment, device’s loca-
tion and orientation prediction, and object classification for VR/AR
applications under poor visibility. Our results demonstrate that
Argus generalizes well across diverse environments, and it enables
reliable and versatile mmWave networks and applications.
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