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Multimedia applications in smartphones

® Growing mobile multimedia applications due to
pervasiveness of smartphones

® Most apps are standalone

¢ Standalone smartphones are not suitable for
demanding multimedia applications



Demanding multimedia recording applications

® Smart conferencing e Autonomous lecture
recording




Existing solutions
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Polycom QDX 6000 Polycom CX5000

e Cost ~ $4000 - $5000
e Weight ~ 3 Kg.
® Requires dedicated infrastructure (lacks portability)



Synchronized smartphone array

e Goal

Leverage multiple smartphones’ microphones to
realize smart conferencing/lecture room recording

= Practical audio beamforming

= Robust speaker localization

e Challenge

Precise audio I/O synchronization



Dia: System overview
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Why synchronization?

'ﬁ.\
\

Combined
signals



Why synchronization?
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Independent CPU and audio I/O clocks
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Clock synchronization

e Problem

Because of independent CPU and Audio I/O clock,
synchronizing only CPU clock at application level is not

sufficient

Sampling offset
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Arrival timestamp

Our solution: Two-level synchronization

e Observations
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LCCPY(¢) =
a(8) .GC(t) + b(8)

Lcaudio (Lccpu(t)) —
a(8) .LCPY(t) + B(5)
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Two-level synchronization
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Estimating the timing models
LCP%(t) = a(8) .GC(t) + b(S)

* Observe first n tuples, {GC (t;), LCP*(t;)}j = 1,2, ...,

® Run a linear regression to estimate a and b

Lewmale(LCPu(r)) = a(8) . LCPH(E) + B(5)

e Observe m tuples,{LCP(¢t;),k} k=1,2,..,m

® Run another linear regression to estimate « and 8
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Implementation

® Implemented in 8 Samsung Galaxy
Nexus smartphones

e Modified Broadcom wireless drivers ‘}_;-V!‘_-
and Tinyalsa audio drivers in Linux =0
kernel of Android OS

e Used Desktop PC as server to process the synchronized
audio signals
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Synchronization performance
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Accuracy within 2 ~ 3 samples at 16 kHz = 187.5 US
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Synchronization performance

¢ |mpact of initialization time

® |mpact of audio sampling frequency
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Only 500 beacons, initial
setup time = 50 sec.

Recording time (sec.)

Audio sampling rate

Invariant

16



Application to autodirective audio capturing
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Audio Beamforming




Audio Beamforming Algorithm

¢ Minimum Variance Distortionless Response (MVDR)
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- MVDR theorem: to find the W* that

W*

* Steers the “beam” to the desired direction

* Minimizes the output energy of noise signals
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Speaker tracking using Time Difference Of Arrival

¢ TDOA estimation
= Generalized cross-correlation with phase transformation (GCC-PHAT)

= The phase maximizing the cross-correlation corresponds to the
TDOA

¢ Problem:
= |nstability of the estimation result

e Solution: Adaptive time-domain linear filter
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Speaker tracking: Binary Mapping Algorithm

How do we find the location of speaker without

knowing the distance between smartphones?
Q Speaker

S =1[-1,+1,1,1,1,1,1]

= Region Signature S: unique binary vector for each region

= Use minimum Euclidean distance for region signature matching
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Beamforming performance

¢ Beamforming gain from a smartphone array

= Gain scales with the growing number of microphones
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Speakers’ position

Accuracy of speaker tracking
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In round-table conference scenario

In lecture room scenario
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~90 - 93% of accuracy!
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Conclusion

® Precise audio sample synchronization enables many
distributed audio sensing applications in smartphones

¢ Practical autodirective audio capturing and speaker
tracking by ad-hoc cooperative smartphones

® [uture work

= Cooperative audio and visual recording system



Thank you!



Backup slides



How precise?

® Human voice can range from 500 Hz — 2 kHz

e Equivalently the synchronization timing offset between
two microphones < 1/(2 * 2000) = 250 US

Requirement: Audio synchronization
timing offset should be below 250 uS!
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Independent CPU and audio I/O clocks
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Independent CPU and audio I/O clocks

Synchronize Re-synchronize

29



